] # prepare train, valid, annotation list root_path = "./data/VOCdevkit/VOC2012/" train_img_list, train_annotation_list, val_img_list, val_annotation_list = make_datapath_list( root_path) color_mean = (104, 117, 123) input_size = 300 # transform = DataTransform(input_size, color_mean) train_dataset = MyDataset(train_img_list, train_annotation_list, phase="train", transform=DataTransform(input_size, color_mean), anno_xml=Anno_xml(classes)) val_dataset = MyDataset(val_img_list, val_annotation_list, phase="val", transform=DataTransform(input_size, color_mean), anno_xml=Anno_xml(classes)) # print(train_dataset.__getitem__(1)) batch_size = 4 train_dataloader = data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=my_collate_fn) val_dataloader = data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False,
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] # prepare train, valid, annotation list root_path = "./data/VOCdevkit/VOC2012/" train_img_list, train_annotation_list, val_img_list, val_annotation_list = make_datapath_list(root_path) # read img img_file_path = train_img_list[0] img = cv2.imread(img_file_path) # Height, Width, Channel(BGR) height, width, channels = img.shape # annotation information trans_anno = Anno_xml(classes) anno_info_list = trans_anno(train_annotation_list[0], width, height) # plot original image plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) # mặc định của matplotlib là RGB plt.show() # prepare data transform color_mean = (104, 117, 123) input_size = 300 transform = DataTransform(input_size, color_mean) # transform train img phase = "train" img_transformed, boxes, labels = transform(img, phase, anno_info_list[:,:4], anno_info_list[:, 4]) plt.imshow(cv2.cvtColor(img_transformed, cv2.COLOR_BGR2RGB)) # mặc định của matplotlib là RGB
if __name__ == "__main__": classes = ['Car', 'Van', 'Truck', 'Pedestrian', 'Person_sitting', 'Cyclist', 'Tram', 'Misc', 'DontCare'] # prepare train, valid, annotation list root_path = "../stereo_datasets/training" train_img_list, train_annotation_list, val_img_list, val_annotation_list = make_datapath_list(root_path) # prepare data transform color_mean = (104, 117, 123) input_size = 300 train_dataset = MyDataset(train_img_list, train_annotation_list, phase="train", transform=DataTransform(input_size, color_mean), anno_xml=Anno_xml(classes)) val_dataset = MyDataset(val_img_list, val_annotation_list, phase="val", transform=DataTransform(input_size, color_mean), anno_xml=Anno_xml(classes)) # print(len(train_dataset)) # print(train_dataset.__getitem__(1)) batch_size = 4 train_dataloader = data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=my_collate_fn) val_dataloader = data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False, collate_fn=my_collate_fn) dataloader_dict = { "train": train_dataloader, "val": val_dataloader }