示例#1
0
    def __init__(self):
        """create a solved cube object"""

        #INDEX:         0   1   2   3   4   5
        self.sides = ['F','R','B','L','U','D'] #just for convience
        self.colors = ['R','B','O','G','W','Y']
        self.faces_list = []

        #makes a face of each color
        for color in self.colors:
            self.faces_list.append(face(color))

        #Hash table hashes to lists, easy handle
        self.faces = {'F': self.faces_list[0],'R': self.faces_list[1],
                      'B': self.faces_list[2],'L': self.faces_list[3],
                      'U': self.faces_list[4],'D': self.faces_list[5]}

        #this hashes characters to the member functions
        self.rotations ={'F': self.F, 'R': self.R, 'B': self.B,
                         'L': self.L, 'U': self.U, 'D': self.D}

        #this hashes characters to 4-direction tuples NESW
        self.directions = {'F': ('U','R','D','L'), 'R': ('U','B','D','F'),
                           'B': ('U','L','D','R'), 'L': ('U','F','D','B'),
                           'U': ('B','R','F','L'), 'D': ('F','R','B','L')}
    def s(self):
        global trail_face
        print(trail_face)
        if trail_face==1:
            self.txt2=('.......Trail 2.......')

        img=face()
        record=database()
        record.connection()
        prediction=img.prediction(keypairs(record.get_profile()))
        print('prediction:',prediction)
        self.txt2='Done'
        print('user:'******'Authorized'
                trail_face=0
                self.manager.current='tier2'
                break
            else:
                self.txt2='Failed! Try Again'
                trail_face+=1
                self.manager.current='tier1'
                break

        if trail_face>1:
            trail_face=0
            self.txt2='**No Access**'
            self.manager.current='first'
示例#3
0
 def process(self):
     resize.resize(self.path)
     temp_path = self.path
     while (temp_path[-1]!='\\'):
         temp_path = temp_path[:-1]
     img      = fr.api.load_image_file(temp_path+'___temp.jpg')
     location = fr.api.face_locations(img, number_of_times_to_upsample=1, model='hog')
     encoding = fr.api.face_encodings(img, known_face_locations=location, num_jitters=1)
     for i in range(len(encoding)) :
         self.faces.append(face(self.path, location[i], encoding[i]))
示例#4
0
文件: box.py 项目: jbernardis/cncbox
    def initFaces(self):
        self.faces = [None for i in range(6)]
        self.faces[FACE_TOP]    = face.face(self.Depth, self.Width, self.Wall)
        self.faces[FACE_TOP].setTabType(face.FHEIGHT, SLOTS)
        self.faces[FACE_TOP].setTabType(face.FWIDTH, SLOTS)
        
        self.faces[FACE_BOTTOM] = face.face(self.Depth, self.Width, self.Wall)
        self.faces[FACE_BOTTOM].setTabType(face.FHEIGHT, SLOTS)
        self.faces[FACE_BOTTOM].setTabType(face.FWIDTH, SLOTS)
        
        self.faces[FACE_LEFT]   = face.face(self.Height, self.Depth, self.Wall)
        self.faces[FACE_LEFT].setTabType(face.FHEIGHT, SLOTS)
        self.faces[FACE_LEFT].setTabType(face.FWIDTH, TABS)
        
        self.faces[FACE_RIGHT]  = face.face(self.Height, self.Depth, self.Wall)
        self.faces[FACE_RIGHT].setTabType(face.FHEIGHT, SLOTS)
        self.faces[FACE_RIGHT].setTabType(face.FWIDTH, TABS)
        
        self.faces[FACE_FRONT]  = face.face(self.Height, self.Width, self.Wall)
        self.faces[FACE_FRONT].setTabType(face.FWIDTH, TABS)
        self.faces[FACE_FRONT].setTabType(face.FWIDTH, TABS)

        self.faces[FACE_BACK]   = face.face(self.Height, self.Width, self.Wall)
        self.faces[FACE_BACK].setTabType(face.FWIDTH, TABS)
        self.faces[FACE_BACK].setTabType(face.FWIDTH, TABS)

        for fc in self.faces:
            fc.setNoRelief()
示例#5
0
    def __init__(self):
        """create a solved cube object"""

        #INDEX:         0   1   2   3   4   5
        self.sides = ['F', 'R', 'B', 'L', 'U', 'D']  #just for convience
        self.colors = ['R', 'B', 'O', 'G', 'W', 'Y']
        self.faces_list = []

        #makes a face of each color
        for color in self.colors:
            self.faces_list.append(face(color))

        #Hash table hashes to lists, easy handle
        self.faces = {
            'F': self.faces_list[0],
            'R': self.faces_list[1],
            'B': self.faces_list[2],
            'L': self.faces_list[3],
            'U': self.faces_list[4],
            'D': self.faces_list[5]
        }

        #this hashes characters to the member functions
        self.rotations = {
            'F': self.F,
            'R': self.R,
            'B': self.B,
            'L': self.L,
            'U': self.U,
            'D': self.D
        }

        #this hashes characters to 4-direction tuples NESW
        self.directions = {
            'F': ('U', 'R', 'D', 'L'),
            'R': ('U', 'B', 'D', 'F'),
            'B': ('U', 'L', 'D', 'R'),
            'L': ('U', 'F', 'D', 'B'),
            'U': ('B', 'R', 'F', 'L'),
            'D': ('F', 'R', 'B', 'L')
        }
示例#6
0
def collecting():
    data = urlopen(base_url).read()
    soup = BeautifulSoup(data, "html.parser")
    dd = datetime.today()
    collect_time = str(dd.year) + "," + str(dd.month) + "," + str(dd.day)
    patter = '[^\w\s]'
    co = []
    ll = []
    for i in soup.find_all('div',
                           {'class': 'hdline_flick_item'}):  #헤드라인 사진포함된 것 추출
        a = i.find('a')
        ll.append(base_url + a.get('href'))

    for i in soup.find_all('dd'):  #대표기사들 추출
        b = i.find('a')
        ll.append(b.get('href'))

    for k in soup.find_all('div', 'hdline_article_tit'):  #헤드라인 추출
        c = k.find('a')
        ll.append(base_url + c.get('href'))

    for data in soup.find_all('div', 'mtype_list_wide'):  #나머지 기사 추출
        try:
            for a in data.find_all('a'):
                link = a.get('href')  # for getting link
                ll.append(link)

        except OSError:
            break

    for i in soup.find_all('ul',
                           {'class': 'section_list_ranking'}):  #가장많이본 뉴스 추출
        for j in i.find_all('a'):
            link = j.get('href')
            ll.append(base_url + link)

    for i in ll:
        cs = []
        article_body, title = parse(i)
        press_1 = press(i)
        good, nice, sad, angry, wanted, recommand = face(i)
        dic = {
            'title': title,
            'press': press_1,
            'good': good,
            'nice': nice,
            'sad': sad,
            'angry': angry,
            'wanted': wanted,
            'recommand': recommand
        }
        cs.append('naver_news')
        cs.append(title)
        cs.append(article_body)
        cs.append(collect_time)
        cs.append(i)
        cs.append(good)
        cs.append(nice)
        cs.append(sad)
        cs.append(angry)
        cs.append(wanted)
        cs.append(recommand)
        cs.append(press_1)

        try:
            save('naver_news', title, article_body, collect_time, i, good,
                 nice, sad, angry, wanted, recommand, press_1)
        except:  #헤드라인 뉴스와 분야별 순위에 같이 포함되면 기본키 중복으로 삽입 거절당하기 때문에 그것을 방지하기 위한 예외처리
            pass

        co.append(cs)
    panda(co)
 def train(self):
     s=face()
     record.connection()
     s.train2(keypairs(record.get_profile()))
     self.label='**Training Completed**'
     self.manager.current='training'
示例#8
0
    def get_frame(self):

        fn = None
        self.frames = open("stream.jpg", 'wb+')
        self.ret, self.frame = self.cap.read()
        # Resize frame of video to 1/4 size for faster face recognition processing
        small_frame = cv2.resize(self.frame, (0, 0), fx=0.25, fy=0.25)

        # Only process every other frame of video to save time
        if self.process_this_frame:
            # Find all the faces and face encodings in the current frame of video
            face_locations = face_recognition.face_locations(small_frame)
            face_encodings = face_recognition.face_encodings(
                small_frame, face_locations)

            face_names = []
            for face_encoding in face_encodings:
                # See if the face is a match for the known face(s)
                # results = face_recognition.compare_faces(self.known_faces_encodings, face_encoding)
                face_distances = face_recognition.face_distance(
                    self.known_faces_encodings, face_encoding)
                # print(face_distances)
                # print()

                # print(results)
                # import ipdb; ipdb.set_trace();
                if min(face_distances) < 0.5:
                    # uid = uids[results.index(True)]
                    uid = self.uids[np.argmin(face_distances)]
                    name = uid
                else:
                    name = uuid.uuid4().hex
                    self.uids.append(name)
                    self.known_faces_encodings.append(face_encoding)
                    # name = "Unknown"
                face_names.append(name)

        process_this_frame = not self.process_this_frame

        # Display the results
        for (top, right, bottom, left), name in zip(face_locations,
                                                    face_names):
            # Scale back up face locations since the frame we detected in was scaled to 1/4 size
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4

            crop_face = self.frame[top:bottom, left:right]
            fn = 'data/new_faces/{}.png'.format(name)
            if not os.path.isfile(fn):
                cv2.imwrite(fn, crop_face)
                cv2.imwrite('static/{}.png'.format(name), crop_face)

            # Draw a box around the face
            cv2.rectangle(self.frame, (left, top), (right, bottom),
                          (0, 0, 255), 2)

            # Draw a label with a name below the face
            cv2.rectangle(self.frame, (left, bottom - 35), (right, bottom),
                          (0, 0, 255), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(self.frame, str(name), (left + 6, bottom - 6), font,
                        1.0, (255, 255, 255), 1)

        if self.ret:  # frame captures without errors...
            cv2.imwrite("stream.jpg", self.frame)  # Save image...

        with open('result.html', 'w') as f:

            result = pd.DataFrame()
            result['uid'] = face_names
            fns = []
            vks = []
            genders = []
            for uid in face_names:

                if uid in df.index:
                    print("&&&&&&&&&&&&&&&&")
                    kind = 'familiar'
                    fns.append('/static/{}.jpg'.format(uid))
                    vks.append('https://vk.com/id{}'.format(uid))
                    # import ipdb; ipdb.set_trace()
                    genders.append(df.loc[uid]['sex'])
                else:
                    print(self.prev_fn)
                    print(fn)
                    res = {}
                    if self.prev_fn != fn:
                        res = face(fn)
                        print(res)
                        if 'error' not in res:
                            try:
                                res = res[0].get('faceAttributes')
                            except:
                                print(res)
                                res = {}
                            self.prev_fn = fn

                    kind = res.get('gender', 'None')
                    print(kind)
                    genders.append(kind)
                    fns.append('/static/{}.png'.format(uid))
                    vks.append(None)
                if uid == '144144243':
                    kind = 'friend'

                print(kind)
            if face_names:
                create_html(face_names[0], kind)
            else:
                create_html('0', 'empty')
            result['photo'] = fns
            result['vk'] = vks
            result['gender'] = genders
            # print(result)
            f.write(template.render({'x': result}))

        return self.frames.read()
示例#9
0
def take_photo(albumPath):
    img = 0
    display = 0

    cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
    cv2.namedWindow('camera', cv2.WINDOW_NORMAL)

    cv2.setWindowProperty('camera', cv2.WND_PROP_FULLSCREEN,
                          cv2.WINDOW_FULLSCREEN)
    cv2.setWindowProperty('camera', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_NORMAL)

    # ii = Image.open('background.png')
    # ret, camera = cap.read()
    # print(camera.shape)
    # im = ii.resize((ii.size[0]//3,ii.size[1]//3),Image.NEAREST)
    white = cv2.imread('../../../photo_email/background.png')

    faces = []
    phrase = 0
    while (True):
        # Capture camera-by-camera
        ret, camera = cap.read()
        display = camera.copy()
        location = fr.api.face_locations(display)
        if len(location) > 0:
            for fc in location:
                display = cv2.rectangle(display, (fc[3], fc[0]),
                                        (fc[1], fc[2]), (0, 255, 0), 4)

        if phrase == 0:
            display = np.concatenate((display[0:480, 140:500], white, white),
                                     axis=1)
        elif phrase == 1:
            display = np.concatenate(
                (faces[0], display[0:480, 140:500], white), axis=1)
        else:
            display = np.concatenate(
                (faces[0], faces[1], display[0:480, 140:500]), axis=1)

        cv2.imshow('camera', display)
        key = cv2.waitKey(1)

        if key == ord('q'):
            cap.release()
            cv2.destroyAllWindows()
            break
        elif key == ord('c') and len(location) > 0:
            faces.append(camera[0:480, 140:500])
            if phrase < 2:
                phrase += 1
            else:
                cap.release()
                cv2.destroyAllWindows()
                break
    photo = []
    for f in faces:
        location = fr.api.face_locations(f)
        encoding = fr.api.face_encodings(f, known_face_locations=location)
        # print(encoding)
        photo.append(face(0, location, encoding))

    alb = album.load(albumPath)
    ppp = alb.match(photo, 0.8)
    #     print(r"""C:\Users\4E14ChuYatHong\Desktop\20190909_Prizegiving_ceremony\_DSC7317.JPG 0.4951498138713914
    # C:\Users\4E14ChuYatHong\Desktop\20190909_Prizegiving_ceremony\_DSC7318.JPG 0.502228817791267""")
    # sys.exit()
    for p in ppp:
        print(p[0].path, p[1][0])
示例#10
0
def process(frame, count=0):
    cv2.imwrite('donga.jpg', frame)
    if face('donga.jpg') == 1:
        print("Good")
    else:
        email('donga.jpg')
示例#11
0
 def post(self):        
     str_xml = self.request.body #获得post来的数据
     xml = etree.fromstring(str_xml)#进行XML解析
     msgType=xml.find("MsgType").text
     fromUser=xml.find("FromUserName").text
     toUser=xml.find("ToUserName").text
     
     respContent = ""
     
     if msgType == "text":
         content=xml.find("Content").text#获得用户所输入的内容
         
         if content.startswith("翻译"):
             #拆分以翻译开头
             reinfo = re.compile("^翻译")
             #首先content值类型是unicode,所以要先转换为str在拆分,strip去除左右空格
             args = reinfo.sub('', content.encode("utf-8")).strip()
             if not args:
                 respContent = promptMsg.getFanYiMsg()
             else:    
                 respContent = translate.Translate().baiduFanYi(args)
             
         elif content.startswith("歌曲"):
             reinfo = re.compile("^歌曲")
             args = reinfo.sub('', content.encode("utf-8")).strip()
             argslist = args.split("@")
             des = "来自百度音乐"
             if not argslist[0]:
                 respContent = promptMsg.getMusicMsg()
             elif len(argslist) == 1:
                 respContent = music.Music().baiduMusic(argslist[0],"")
             else:
                 des = argslist[1]
                 respContent = music.Music().baiduMusic(argslist[0],argslist[1])
             
             if argslist[0]:
                 self.finish(weixinResult.result_music(fromUser, toUser, int(time.time()), argslist[0],des,respContent[0],respContent[1]))
     
         elif content.startswith("天气"):
             reinfo = re.compile("^天气")
             args = reinfo.sub('', content.encode("utf-8")).strip()
             if not args:
                 respContent = promptMsg.getWeather()
             else:
                 newsMsg = weather.Weather().baiduWeather(args, fromUser, toUser)
                 self.finish(newsMsg)
     
         elif content.startswith("ip"):
             reinfo = re.compile("^ip")
             args = reinfo.sub('', content.encode("utf-8")).strip()
             if not args:
                 respContent = promptMsg.getIp()
             else:    
                 respContent = ip.IP().taobaoIP(args)
         
         elif content.startswith("手机"):
             reinfo = re.compile("^手机")
             args = reinfo.sub('', content.encode("utf-8")).strip()
             if not args:
                 respContent = promptMsg.getPhone()
             else:
                 respContent = phone.Phone().tenpayPhone(args).encode("utf-8")
         
         elif content.startswith("苹果"):
             reinfo = re.compile("^苹果")
             args = reinfo.sub('', content.encode("utf-8")).strip()
             if not args:
                 respContent = promptMsg.getApple()
             else:
                 result, code = imei.IMEI().appleIMEI(args, toUser, fromUser)
                 if code == 0:
                     self.finish(result)
                 elif code == -1:
                     respContent = result
                 
         elif content.encode("utf-8").strip() == "历史上的今天" or content.encode("utf-8").strip() == "lssdjt":
             respContent = todayonhistory.History().rijiben()
         
         elif len(content.replace("—","-").replace("-","-").split("-")) == 3:
             s = content.replace("—","-").replace("-","-").split("-")
             region = s[0]
             start = s[1]
             end = s[2]
         
             newsMsg = navigation.Navigation().baiduNavigation(toUser, fromUser, region, start, end)
             self.finish(newsMsg)
             
         else:
             respContent = promptMsg.getTextMsg()
     
     elif msgType == "image":
         #取得图片地址  
         picUrl = xml.find("PicUrl").text  
         respContent = face.face(picUrl)
     
     elif msgType == "location":
         respContent = xml.find("Location_X").text
     
     elif msgType == "event":
         #事件类型
         eventType = xml.find("Event").text
         #订阅
         if eventType == "subscribe":
             respContent = "谢谢您关注娟子服装。"
         #取消订阅    
         #elif eventType == "unsubscribe":
             #取消订阅后用户再收不到公众号发送的消息,因此不需要回复消息
         #自定义菜单点击事件    
         elif eventType == "CLICK":
             #事件KEY值,与创建自定义菜单时指定的KEY值对应
             eventKey = xml.find("EventKey").text
             #TODO
     
     self.finish(weixinResult.result_text(fromUser, toUser, int(time.time()), respContent))
示例#12
0
        continue
#	frameDelta = cv2.absdiff(firstFrame, gray)
    consecDelta = cv2.absdiff(prevFrame, gray)
    #	thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
    consecThresh = cv2.threshold(consecDelta, 25, 255, cv2.THRESH_BINARY)[1]

    # dilate the thresholded image to fill in holes, then find contours
    # on thresholded image
    #	pyautogui.confirm('Shall I confirm?')
    #	thresh = cv2.dilate(thresh, None, iterations=2)
    consecThresh = cv2.dilate(consecThresh, None, iterations=2)
    #	_, cnts, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
    _, f**k, _ = cv2.findContours(consecThresh.copy(), cv2.RETR_EXTERNAL,
                                  cv2.CHAIN_APPROX_SIMPLE)

    detect_face = face(frame)

    for x in f**k:
        y = cv2.contourArea(x)
        if cv2.contourArea(x) < 3000 and not detect_face:
            text = "Unoccupied"
            continue
        else:
            text = "Occupied"

    if text == "Occupied":
        if detect_face:
            print("good")
            count = 0
        else:
            count += 1
示例#13
0
    # dilate the thresholded image to fill in holes, then find contours
    # on thresholded image
    #	pyautogui.confirm('Shall I confirm?')
    thresh = cv2.dilate(thresh, None, iterations=2)
    _, cnts, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
                                  cv2.CHAIN_APPROX_SIMPLE)

    # loop over the contours
    for c in cnts:
        # if the contour is too small, ignore it
        if cv2.contourArea(c) < args["min_area"]:
            continue

        text = "Occupied"
    if text == "Occupied":
        if face(frame) is 1:
            print("good")
        else:
            print('bad')
            cv2.imwrite('donga.jpg', frame)
            Process(target=email, args=('donga.jpg', )).start()
#	process(text,frame)

#	cv2.putText(frame, "Room Status: {}".format(text), (10, 20),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
#	cv2.putText(frame, datetime.datetime.now().strftime("%A %d %B %Y %I:%M:%S%p"),(10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1)

# For testing purposes show these videos
#	Process(cv2.imshow("Security Feed", frame)).start()
#	cv2.imshow("Thresh", thresh)
#	cv2.imshow("Frame Delta", frameDelta)
示例#14
0
def secret_cam():
	global time
	# start program from command line
	ap = argparse.ArgumentParser()
	ap.add_argument("-v", "--video", help="path to the video file")
	ap.add_argument("-a", "--min-area", type=int, default=500, help="minimum area size")
	ap.add_argument("-t",default=False)
	args = vars(ap.parse_args())

	#Video of thief
	fourcc = cv2.VideoWriter_fourcc(*'MJPG')
	#(h, w) = face_recognition.load_image_file('donga.jpg').shape[:2]
	# Webcam
	if args.get("video", None) is None:
		cam = cv2.VideoCapture(0)
		time.sleep(0.25)

	# otherwise, we are reading from a video file
	else:
		cam = cv2.VideoCapture(args["video"])
	# initialize the first frame in the video stream
	firstFrame = None
	count,vid_no,x=0,0,True
	time_now = datetime.datetime.now()
	while True:
		w, h = cam.get(3), cam.get(4)
		if x is True:
			time_now = datetime.datetime.now()
			video=cv2.VideoWriter('videos/'+str(time_now)+'.avi',fourcc,15.0,(int(w),int(h)),True)
			x=False
		# grab the current frame and initialize the occupied/unoccupied text
		(grabbed, frame) = cam.read()
		text = "Unoccupied"
		# resize the frame, convert it to grayscale, and blur it
	#	frame = imutils.resize(frame, width=500)
		gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
		gray = cv2.GaussianBlur(gray, (21, 21), 0)
		# if the first frame is None, initialize it
		if firstFrame is None:
			firstFrame = gray
			prevFrame = gray
			continue
		consecDelta = cv2.absdiff(prevFrame,gray)
		consecThresh = cv2.threshold(consecDelta,25,255,cv2.THRESH_BINARY)[1]
		# dilate the thresholded image to fill in holes, then find contours
		# on thresholded image
	#	pyautogui.confirm('Shall I confirm?')

		consecThresh=cv2.dilate(consecThresh,None,iterations=2)

		_, f**k, _ = cv2.findContours(consecThresh.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
		# loop over the contours
		detect_face=face(frame)

		for dam in f**k:
			# if the contour is too small, ignore it
			if cv2.contourArea(dam) < 11000 and not detect_face:
				continue

			(x, y, w, h) = cv2.boundingRect(dam)
	#		cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)

			text = "Occupied"
		if text=="Occupied":
			if detect_face is 1:
				print("good")
				count=0
			else:
				count+=1
				print('bad')
				video.write(frame)
				if count >= 50:
					Process(target=drive,args=('videos/'+str(time_now)+'.avi',)).start()
					vid_no+=1
					count=0
					x=True
		prevFrame = gray

		cv2.putText(frame, "Room Status: {}".format(text), (10, 20),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
		cv2.imshow("Security Feed", frame)
	#	cv2.imshow('gray',gray)
		key = cv2.waitKey(1) & 0xFF
		if key == ord("q"):
			break


	# cleanup the cam and close any open windows
	try:
		video.release()
	except:
		pass
	cam.release()
	cv2.destroyAllWindows()
	return frame