# The detail network setting opt = parser.parse_args() print(opt) # Save all the codes os.system('mkdir %s' % opt.experiment) os.system('cp *.py %s' % opt.experiment) if torch.cuda.is_available() and opt.noCuda: print( "WARNING: You have a CUDA device, so you should probably run with --cuda" ) # Initialize network net = faceNet.faceNet(m=opt.marginFactor, feature=False) lossLayer = faceNet.CustomLoss(s=opt.scaleFactor) # Move network and containers to gpu if not opt.noCuda: net = net.cuda(opt.gpuId) # Initialize optimizer optimizer = optim.SGD(net.parameters(), lr=opt.initLR, momentum=0.9, weight_decay=5e-4) # Initialize dataLoader faceDataset = dataLoader.BatchLoader(imageRoot=opt.imageRoot, alignmentRoot=opt.alignmentRoot, cropSize=(opt.imWidth, opt.imHeight))
# The detail network setting opt = parser.parse_args() print(opt) # Save all the codes os.system('mkdir %s' % opt.experiment) os.system('cp *.py %s' % opt.experiment) if torch.cuda.is_available() and opt.noCuda: print( "WARNING: You have a CUDA device, so you should probably run with --cuda" ) # Initialize network net = faceNet.faceNet(m=opt.marginFactor, feature=False) lossLayer = faceNet.CustomLoss() # Move network and containers to gpu if not opt.noCuda: net = net.cuda(opt.gpuId) # Initialize optimizer optimizer = optim.SGD(net.parameters(), lr=opt.initLR, momentum=0.9, weight_decay=5e-4) # Initialize dataLoader faceDataset = dataLoader.BatchLoader(imageRoot=opt.imageRoot, alignmentRoot=opt.alignmentRoot, cropSize=(opt.imWidth, opt.imHeight))