def run(in_='media/test_1.mp4', out='media/test_1_out.mp4'): face_detector('dataset/live_stream_images') liveStream('dataset/live_stream_images_out', in_, out)
from configs.app_face_detection_config import THRESHOLD, \ PRETRAINED_MODEL_RES10, PRETRAINED_MODEL_OPENCV, PRETRAINED_MODEL_RETAIL_0044 from configs.app_age_prediction_config import PRETRAINED_MODEL as PRETRAINED_MODEL_AGE from face_detection import face_detector from age_prediction import age_predictor import cv2 if __name__ == "__main__": output_path = "./output/out.jpg" image = cv2.imread(filename="./img/amanda_bynes.jpg") image_marked, face_bboxes, t_elapsed = face_detector( image=image, pretrained_model=PRETRAINED_MODEL_RETAIL_0044, threshold=THRESHOLD, output_path=output_path) print("face bboxes: ", face_bboxes) print("elapsed time: ", t_elapsed) image_marked, ages, t_elapsed = age_predictor( image=image_marked, pretrained_model=PRETRAINED_MODEL_AGE, bboxes=face_bboxes, output_path=output_path) print("ages: ", ages) print("elapsed time: ", t_elapsed) cv2.imshow("age", image_marked)
#USE GUI for running the specific case of searching from database. #or Use each command line. #for face detection stuff from face_detection import face_detector face_detector('dataset/Test_data_full') #for example for matching faces from face_match_v3 import match_faces mn, tn, ml, aa = match_faces('dataset/missing_images_out', 'dataset/Test_data_full', 'matched/final_output_top3')
def run(): face_detector('dataset/live_stream_images') liveStream('dataset/live_stream_images_out')
ap = argparse.ArgumentParser() default_model = "../models/res10_300x300_ssd_iter_140000_fp16.caffemodel" ap.add_argument("-p", "--prototxt", default="../models/deploy.prototxt", help="path to facial landmark predictor") ap.add_argument("-m", "--model", default=default_model, help="path to facial landmark predictor") ap.add_argument("-s", "--shape-predictor", default="../models/shape_predictor_68_face_landmarks.dat", help="path to facial landmark predictor") args = vars(ap.parse_args()) # initialize the detectors detector = face_detection.face_detector(args["prototxt"], args["model"]) predictor = facial_landmark_detector(args["shape_predictor"]) cap = cv2.VideoCapture(0) while cv2.waitKey(1) != 27: ret, frame = cap.read() (boxes, confidences) = detector.detect(frame) shapes = predictor.predict(frame, boxes) frame = detector.draw(frame, boxes, confidences) frame = predictor.draw(frame, shapes) cv2.imshow("Camera", frame)
def main(): face = face_detector() face.set_listener(f) face.detect()