def get_embedding(self, images): prewhiten_face = facenet.prewhiten(images) feed_dict = { self.images_placeholder: [prewhiten_face], self.phase_train_placeholder: False } embedding = self.sess.run(self.tf_embeddings, feed_dict=feed_dict) return embedding
def generate_embedding(self, image): # Get input and output tensors images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") face=self.dectection.find_faces(image) prewhiten_face = facenet.prewhiten(face.image) # Run forward pass to calculate embeddings feed_dict = {images_placeholder: [prewhiten_face], phase_train_placeholder: False} return self.sess.run(embeddings, feed_dict=feed_dict)[0]