def load(self, path):
        """
        Load classifier from pickle file
        :param path: path
        """
        clf = EuclideanClassifier()
        clf.load(path)

        self.clf = clf
    def fit(self, folder):
        """
        Fit classifier from directory.
        Directory must have this structure:
            Person 1:
                file.jpg
                ....
                file.jpg
            Person 2:
                file.jpg
                ...
                file.jpg
            ...
        :param folder: root folder path
        """
        # Initialize classifier
        clf = EuclideanClassifier()

        # Load all files
        files = []
        for ext in config.ALLOWED_IMAGE_TYPES:
            files.extend(
                glob.glob(os.path.join(folder, "*", ext), recursive=True))

        for path in tqdm.tqdm(files):
            # Load image
            image = cv2.imread(path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

            # Get person name by folder
            person = os.path.split(os.path.split(path)[0])[1]

            # Get encoding
            for encoding, face, box in self.face_encoding(image):
                # Add to classifier
                clf.fit([encoding], [person])

        self.clf = clf
    def fit_from_dataframe(self, df, person_col="person", path_col="path"):
        """
        Fit classifier from dataframe.
        :param df: Pandas dataframe
        :param person_col: Dataframe column with person id
        :param path_col: Dataframe column with image path
        """
        # Initialize classifier
        clf = EuclideanClassifier()

        for index, row in tqdm.tqdm(df.iterrows(), total=df.shape[0]):
            # Load image
            image = cv2.imread(row[path_col])
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

            # Get person name by folder
            person = row[person_col]

            # Get encoding
            for encoding, face, box in self.face_encoding(image):
                # Add to classifier
                clf.fit([encoding], [person])

        self.clf = clf