示例#1
0
   
   2018.2.19版本二,多人单目标判断
"""

import cv2
import sys
import gc
from face_train_use_keras import Model

if __name__ == '__main__':
    if len(sys.argv) != 2:
        print("Usage:%s camera_id\r\n" % (sys.argv[0]))
        sys.exit(0)

    # 加载模型
    model = Model()
    model.load_model(
        file_path=
        '/home/yuwangwang/FaceRecognization_Version1/model/me.face.model.h5')

    # 框住人脸的矩形边框颜色,颜色为绿色
    color = (0, 255, 0)

    # 捕获指定摄像头的实时视频流
    cap = cv2.VideoCapture(int(sys.argv[1]))

    # 人脸识别分类器本地存储路径
    cascade_path = "/usr/local/share/OpenCV/haarcascades/haarcascade_frontalface_alt2.xml"

    # 循环检测识别人脸
    while True:
#-*- coding: utf-8 -*-

import cv2
import sys
import gc
from face_train_use_keras import Model

if __name__ == '__main__':
    if len(sys.argv) != 2:
        print("Usage:%s camera_id\r\n" % (sys.argv[0]))
        sys.exit(0)

    #load model
    model = Model()
    model.load_model(file_path='me.face.model.h5')

    color = (0, 255, 0)

    cap = cv2.VideoCapture(int(sys.argv[1]))

    cascade_path = "/usr/local/share/OpenCV/haarcascades/haarcascade_frontalface_alt2.xml"

    while True:
        _, frame = cap.read()

        frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

        #load classfacation
        cascade = cv2.CascadeClassifier(cascade_path)

        #where is face
示例#3
0
    def start(self):
        global string

        #加载模型
        model = Model()
        model.load_model(file_path='./model/me.face.model.h5')

        #框住人脸的矩形边框颜色
        color = (0, 255, 0)

        #捕获指定摄像头的实时视频流
        cap = cv2.VideoCapture(0)

        #人脸识别分类器本地存储路径
        cascade_path = "E:/Python/Lib/site-packages/cv2/data/haarcascade_frontalface_alt2.xml"

        #循环检测识别人脸
        while True:
            _, frame = cap.read()  #读取一帧视频

            #图像灰化,降低计算复杂度
            frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

            #使用人脸识别分类器,读入分类器
            cascade = cv2.CascadeClassifier(cascade_path)

            #利用分类器识别出哪个区域为人脸
            faceRects = cascade.detectMultiScale(frame_gray,
                                                 scaleFactor=1.2,
                                                 minNeighbors=3,
                                                 minSize=(32, 32))
            id = ''
            if len(faceRects) > 0:
                for faceRect in faceRects:
                    x, y, w, h = faceRect

                    #截取脸部图像提交给模型识别这是谁
                    image = frame[y - 10:y + h + 10, x - 10:x + w + 10]
                    faceID = model.face_predict(image)

                    #如果是“我”
                    if faceID == 0:
                        cv2.rectangle(frame, (x - 10, y - 10),
                                      (x + w + 10, y + h + 10),
                                      color,
                                      thickness=2)

                        #文字提示是谁
                        cv2.putText(
                            frame,
                            'KK',
                            (x + 30, y + 30),  #坐标
                            cv2.FONT_HERSHEY_SIMPLEX,  #字体
                            1,  #字号
                            (255, 0, 255),  #颜色
                            2)  #字的线宽
                        id = "KK"

                    else:
                        cv2.rectangle(frame, (x - 10, y - 10),
                                      (x + w + 10, y + h + 10),
                                      color,
                                      thickness=2)

                        #文字提示是谁
                        cv2.putText(
                            frame,
                            'WWL',
                            (x + 30, y + 30),  #坐标
                            cv2.FONT_HERSHEY_SIMPLEX,  #字体
                            1,  #字号
                            (255, 0, 255),  #颜色
                            2)  #字的线宽
                        id = "wwl"

            cv2.imshow("faceRecognition", frame)

            #等待10毫秒看是否有按键输入
            k = cv2.waitKey(10)
            #如果输入q则退出循环
            if k & 0xFF == ord('='):
                localtime = time.asctime(time.localtime(time.time()))
                print("wwl的打卡时间为时间为 :", localtime)
                self.onclock(id, localtime)
                file = './res/wwl.txt'
                with open(file, 'a+') as f:
                    f.write(localtime + '\n')  #加\n换行显示
                break

        #释放摄像头并销毁所有窗口
        cap.release()
        cv2.destroyAllWindows()
示例#4
0
import gc
from face_train_use_keras import Model
import os
import path
import pymysql
import time
import pandas as pd
'''

'''

path = "E:\\python\\face_5.17\\data"
l = []
l = os.listdir(path)

model = Model()
model.load_model(file_path='./model/face_detect607.h5')

#框住人脸的矩形边框颜色
color = (0, 255, 0)
color2 = (255, 0, 0)
color3 = (0, 0, 255)

#捕获指定摄像头的实时视频流
cap = cv2.VideoCapture(0)
#"rtsp://*****:*****@192.168.1.108/cam/realmonitor?channel=1&subtype=0"
#人脸识别分类器本地存储路径
cascade_path = "E:/opencv/data/haarcascades/haarcascade_frontalface_alt2.xml"

#conn = pymysql.connect(host='192.168.1.102', port=3306, user='******', passwd='123456',db="dect",charset='utf8')
#cursor = conn.cursor()
示例#5
0
#-*-coding:utf-8 -*-
__auther__ = 'Alex'
# -*- coding: utf-8 -*-

import cv2
import dlib
import time
from face_train_use_keras import Model

if __name__ == '__main__':
    # 加载模型
    model = Model()
    model.load_model(file_path='./model/jiaYouBG.model.h5')

    # 框住人脸的矩形边框颜色
    color = (0, 255, 0)

    # 捕获指定摄像头的实时视频流
    cap = cv2.VideoCapture("./video/2.mp4")

    inWidth = 300
    inHeight = 300
    inScaleFactor = 1.0
    net = cv2.dnn.readNetFromCaffe('openCVmodel/deploy.prototxt','openCVmodel/res10_300x300_ssd_iter_140000.caffemodel')

    predicterPath = "model/shape_predictor_68_face_landmarks.dat"
    sp = dlib.shape_predictor(predicterPath)

    # 人脸识别分类器本地存储路径
    cascade_path = "/home/alex/桌面/face_recgnition/openCVmodel/haarcascades/haarcascade_frontalface_alt2.xml"
# -*- coding: utf-8 -*-

import cv2
import sys
import gc
from face_train_use_keras import Model

MODEL_PATH = './me.face.model.h5'

if __name__ == '__main__':
    if len(sys.argv) != 2:
        print("Usage:%s camera_id\r\n" % (sys.argv[0]))
        sys.exit(0)

    # 加载模型
    model = Model()
    model.load_model(MODEL_PATH)

    faceID = model.face_predict(image)

    print(faceID)
示例#7
0
    def start_face_recog(self, msg):
        self.stop_dialog()
        model = Model()
        model.load_model(file_path='./face_recog/model/face.model.h5')
        color = (0, 255, 0)
        cascade_path = "/usr/local/share/OpenCV/haarcascades/haarcascade_frontalface_alt2.xml"
        num = 0
        pos_person = {'jiashi': 0, 'yushizhuo': 0}
        while num <= 2:
            frame = self.get_img()
            frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            cascade = cv2.CascadeClassifier(cascade_path)
            faceRects = cascade.detectMultiScale(frame_gray,
                                                 scaleFactor=1.2,
                                                 minNeighbors=3,
                                                 minSize=(32, 32))
            if len(faceRects) > 0:
                if num == 0:
                    self.show_image("recognising111.gif")
                    sentence = "Please do not move. I am trying to find out who you \\pau=30\\ are"
                    self.say(sentence)
                num += 1
                for faceRect in faceRects:
                    x, y, w, h = faceRect
                    image = frame[y - 10:y + h + 10, x - 10:x + w + 10]
                    faceID = model.face_predict(image)
                    if faceID == 0:
                        cv2.rectangle(frame, (x - 10, y - 10),
                                      (x + w + 10, y + h + 10),
                                      color,
                                      thickness=2)

                        # 文字提示是谁
                        cv2.putText(
                            frame,
                            'jiashi',
                            (x + 30, y + 30),  # 坐标
                            cv2.FONT_HERSHEY_SIMPLEX,  # 字体
                            1,  # 字号
                            (255, 0, 255),  # 颜色
                            2)  # 字的线宽
                        pos_person['jiashi'] += 1
                    elif faceID == 1:
                        cv2.rectangle(frame, (x - 10, y - 10),
                                      (x + w + 10, y + h + 10),
                                      color,
                                      thickness=2)

                        # 文字提示是谁
                        cv2.putText(
                            frame,
                            'yushizhuo',
                            (x + 30, y + 30),  # 坐标
                            cv2.FONT_HERSHEY_SIMPLEX,  # 字体
                            1,  # 字号
                            (255, 0, 255),  # 颜色
                            2)  # 字的线宽
                        pos_person['yushizhuo'] += 1
                    else:
                        pass
            cv2.namedWindow("face_pre", cv2.WINDOW_NORMAL)
            cv2.imshow("face_pre", frame)
            k = cv2.waitKey(1)
            if k & 0xFF == ord('q'):
                break
        cv2.destroyAllWindows()
        # 经过3次取值,获取的最有可能的人
        print pos_person
        self.current_person = max(pos_person, key=pos_person.get)
        this_per = self.get_history_item(self.current_person)
        print "========================"
        item_list = list(this_per[self.current_person])
        print item_list
        image_name = self.current_person + '.png'
        # 展示人的身份卡
        self.show_image(image_name)
        sentence = "I see, you must be " + self.current_person + "\\pau=100\\, do you like the " \
                   + item_list[len(item_list) - 1] + " you bought last time ?"
        self.say(sentence)
        self.start_dialog()
        print('\033[0;32m [Kamerider I] Your name is ' + self.current_person +
              "\033[0m")
示例#8
0
# -*- coding: utf-8 -*-

import cv2
from face_train_use_keras import Model

if __name__ == '__main__':
    model = Model()
    # 加载模型
    model.load_model(file_path='my_transfer.h5')

    # 框住人脸的矩形边框颜色
    color = (0, 255, 0)

    # 捕获指定摄像头的实时视频流
    cap = cv2.VideoCapture(0)

    # 人脸识别分类器本地存储路径
    cascade_path = "haarcascade_frontalface_default.xml"

    # 循环检测识别人脸
    while True:
        _, frame = cap.read()  # 读取一帧视频

        # 图像灰化,降低计算复杂度
        frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

        # 使用人脸识别分类器,读入分类器
        cascade = cv2.CascadeClassifier(cascade_path)

        # 利用分类器识别出哪个区域为人脸
        faceRects = cascade.detectMultiScale(frame_gray, scaleFactor=1.2, 
示例#9
0
def show():
    #加载模型
    model = Model()
    model.load_model(file_path='./model/me.face.model.h5')

    #框住人脸的矩形边框颜色
    color = (0, 255, 0)

    #捕获指定摄像头的实时视频流
    cap = cv2.VideoCapture(0)

    #人脸识别分类器本地存储路径
    cascade_path = "/home/binge/anaconda3/pkgs/opencv3-3.1.0-py36_0/share/OpenCV/haarcascades/haarcascade_frontalface_alt2.xml"

    #循环检测识别人脸
    while True:
        _, frame = cap.read()  #读取一帧视频

        #图像灰化,降低计算复杂度
        frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

        #使用人脸识别分类器,读入分类器
        cascade = cv2.CascadeClassifier(cascade_path)

        #利用分类器识别出哪个区域为人脸
        faceRects = cascade.detectMultiScale(frame_gray,
                                             scaleFactor=1.2,
                                             minNeighbors=3,
                                             minSize=(32, 32))
        if len(faceRects) > 0:
            for faceRect in faceRects:
                x, y, w, h = faceRect

                #截取脸部图像提交给模型识别这是谁
                image = frame[y - 10:y + h + 10, x - 10:x + w + 10]
                faceID = model.face_predict(image)

                #如果是“我”
                if faceID == 0:
                    cv2.rectangle(frame, (x - 10, y - 10),
                                  (x + w + 10, y + h + 10),
                                  color,
                                  thickness=2)

                    #文字提示是谁
                    cv2.putText(
                        frame,
                        'me',
                        (x + 30, y + 30),  #坐标
                        cv2.FONT_HERSHEY_SIMPLEX,  #字体
                        1,  #字号
                        (255, 0, 255),  #颜色
                        2)  #字的线宽
                else:
                    pass

        cv2.imshow("识别", frame)

        #等待10毫秒看是否有按键输入
        k = cv2.waitKey(10)
        #如果输入q则退出循环
        if k & 0xFF == ord('q'):
            break

    #释放摄像头并销毁所有窗口
    cap.release()
    cv2.destroyAllWindows()
示例#10
0
#-*- coding: utf-8 -*-
import cv2
import sys
import gc
from face_train_use_keras import Model

from keras import backend as k

if __name__ == '__main__':

    #加载模型
    model = Model()
    model.load_model(file_path='model_weight.h5')
    #框住人脸的矩形边框颜色
    color = (0, 255, 0)
    #捕获指定摄像头的实时视频流
    #cap = cv2.VideoCapture('D:/tmp/vedio/123.mp4')
    cap = cv2.VideoCapture('D:/tmp/vedio/mengmeng.mp4')

    #人脸识别分类器本地存储路径
    cascade_path = "C:/projects/opencv-python/opencv/modules/objdetect/src/cascadedetect/haarcascade_frontalface_alt2.xml"

    #循环检测识别人脸
    while True:
        ret, frame = cap.read()  #读取一帧视频

        #图像灰化,降低计算复杂度
        frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        #使用人脸识别分类器,读入分类器
        cascade = cv2.CascadeClassifier(cascade_path)
        #利用分类器识别出哪个区域为人脸
示例#11
0
    gray2 = gray.astype(np.float32)
    dst = gray2 - blockImage2
    dst = dst.astype(np.uint8)
    dst = cv2.GaussianBlur(dst, (3, 3), 0)
    dst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR)

    return dst


############################################################################################
############################################################################################

if __name__ == '__main__':

    # 加载模型
    model = Model()
    model.load_model(file_path='./model/test.face.model.h5')

    # 框住人脸的矩形边框颜色
    color = (0, 255, 0)

    # 捕获指定摄像头的实时视频流
    cap = cv2.VideoCapture(0)

    # 人脸识别分类器本地存储路径
    cascade_path = "C:\\Users\\Administrator\\Desktop\\Graduation design\\code\\csdn\\haarcascade_frontalface_alt2.xml"

    # 循环检测识别人脸
    while True:
        _, frame = cap.read()  # 读取一帧视频
        # frame=cv2.imread("dupei.jpg")#########################################################################################################测试使用
示例#12
0
def read_capture(detector):
    # 加载模型
    model = Model()
    model.load_model(file_path='./model/face.model.h5')

    num = 100
    video = cv2.VideoCapture(0)
    if video.isOpened():
        success, frame = video.read()
        while success:
            im = frame.copy()

            # dlib的人脸检测器只能检测80x80和更大的人脸,如果需要检测比它小的人脸,需要对图像上采样,一次上采样图像尺寸放大一倍
            # rects = detector(img,1) #1次上采样
            rects = detector(im, 0)
            print rects
            for rect in rects:  # rect.left(),rect.top(),rect.right(),rect.bottom()
                img2recog = im[rect.top() - 10:rect.bottom() + 10,
                               rect.left() - 10:rect.right() + 10]
                faceID = model.face_predict(img2recog)
                if faceID == 0:
                    print "======================================================", faceID
                    cv2.rectangle(im, (rect.left(), rect.top()),
                                  (rect.right(), rect.bottom()), (0, 0, 255),
                                  2, 8)

                    # 文字提示是谁
                    cv2.putText(
                        im,
                        'jiashi',
                        (rect.left() + 30, rect.top() - 30),  # 坐标
                        cv2.FONT_HERSHEY_SIMPLEX,  # 字体
                        1,  # 字号
                        (255, 0, 255),  # 颜色
                        2)  # 字的线宽
                elif faceID == 1:
                    print "======================================================", faceID
                    cv2.rectangle(im, (rect.left(), rect.top()),
                                  (rect.right(), rect.bottom()), (0, 0, 255),
                                  2, 8)

                    # 文字提示是谁
                    cv2.putText(
                        im,
                        'renzhongxing',
                        (rect.left() + 30, rect.top() - 30),  # 坐标
                        cv2.FONT_HERSHEY_SIMPLEX,  # 字体
                        1,  # 字号
                        (255, 0, 255),  # 颜色
                        2)  # 字的线宽
                elif faceID == 2:
                    print "======================================================", faceID
                    cv2.rectangle(im, (rect.left(), rect.top()),
                                  (rect.right(), rect.bottom()), (0, 0, 255),
                                  2, 8)

                    # 文字提示是谁
                    cv2.putText(
                        im,
                        'jingzhibo',
                        (rect.left() + 30, rect.top() - 30),  # 坐标
                        cv2.FONT_HERSHEY_SIMPLEX,  # 字体
                        1,  # 字号
                        (255, 0, 255),  # 颜色
                        2)  # 字的线宽
                elif faceID == 3:
                    print "======================================================", faceID
                    cv2.rectangle(im, (rect.left(), rect.top()),
                                  (rect.right(), rect.bottom()), (0, 0, 255),
                                  2, 8)

                    # 文字提示是谁
                    cv2.putText(
                        im,
                        'zhanghaiyang',
                        (rect.left() + 30, rect.top() - 30),  # 坐标
                        cv2.FONT_HERSHEY_SIMPLEX,  # 字体
                        1,  # 字号
                        (255, 0, 255),  # 颜色
                        2)  # 字的线宽
            cv2.imshow('capture face detection', im)
            if cv2.waitKey(1) >= 0:
                break
            success, frame = video.read()
        cv2.destroyAllWindows()
        video.release()
 def __init__(self):
     self.model = Model()
     self.model.load_model(file_path='/home/yuwangwang/FaceRecognization_Version2/model/me.face.model.h5')
class Camera_reader(object):
    
    # 在初始化camera的时候建立模型,并加载已经训练好的模型
    def __init__(self):
        self.model = Model()
        self.model.load_model(file_path='/home/yuwangwang/FaceRecognization_Version2/model/me.face.model.h5')


    def build_camera(self, camera_id, path_name):
        # opencv文件中人脸级联文件的位置,用于帮助识别图像或者视频流中的人脸
        cascade = cv2.CascadeClassifier('/usr/local/share/OpenCV/haarcascades/haarcascade_frontalface_alt2.xml')
        # 读取dataset数据集下的子文件夹名称
        name_list = read_name_list(path_name)
        
        # 框住人脸的矩形边框颜色,颜色为绿色      
        color = (0, 255, 0)
        
        # 打开摄像头并开始读取画面
        # 捕获指定摄像头的实时视频流
        cap = cv2.VideoCapture(camera_id)
        success, frame = cap.read()

        while True:
             success, frame = cap.read()
             # 图像灰化             
             frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 
             
             # 利用分类器识别出哪个区域为人脸
             # 参数1:image--待检测图片,一般为灰度图像加快检测速度;
             # 参数2:objects--被检测物体的矩形框向量组;
             # 参数3:scaleFactor--表示在前后两次相继的扫描中,搜索窗口的比例系数。默认为1.1即每次搜索窗口依次扩大10%;
             # 参数4:minNeighbors--表示构成检测目标的相邻矩形的最小个数(默认为3个)。
             # 如果组成检测目标的小矩形的个数和小于 min_neighbors - 1 都会被排除。
             # 如果min_neighbors 为 0, 则函数不做任何操作就返回所有的被检候选矩形框,
             # 这种设定值一般用在用户自定义对检测结果的组合程序上;
             # 参数5:flags--要么使用默认值,要么使用CV_HAAR_DO_CANNY_PRUNING,如果设置为
             # CV_HAAR_DO_CANNY_PRUNING,那么函数将会使用Canny边缘检测来排除边缘过多或过少的区域,
             # 因此这些区域通常不会是人脸所在区域;
             # 参数6、7:minSize和maxSize用来限制得到的目标区域的范围。             
             faceRects = cascade.detectMultiScale(frame_gray , 1.3, 5) # 识别人脸
             
             #faceRects = cascade.detectMultiScale(frame_gray, scaleFactor = 1.2, minNeighbors = 3, minSize = (32, 32))   
             
             for (x, y, w, h) in faceRects:
                 image = frame[y - 10: y + h + 10, x - 10: x + w + 10]
                 label,prob = self.model.face_predict(image)  # 利用模型对cv2识别出的人脸进行比对
                 if prob >0.8:    # 如果模型认为概率高于70%则显示为模型中已有的label
                     show_name = name_list[label]
                 else:
                     show_name = 'Stranger'
                 
                 # 显示名字的坐标,字体,字号为1,颜色为粉色,字的线宽为2
                 cv2.putText(frame, show_name, (x, y - 20), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,0,255), 2)  
                 
                 # 在人脸区域画一个正方形出来
                 frame = cv2.rectangle(frame, (x, y), (x + w, y + h), color, thickness = 2)  
             cv2.imshow("Camera", frame)

             # 等待10毫秒看是否有按键输入
             k = cv2.waitKey(10)
             # 如果输入q则退出循环
             if k & 0xFF == ord('q'):
                 break        
        
        # 释放摄像头并销毁所有窗口
        cap.release()
        cv2.destroyAllWindows()

        return camera_id, path_name
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 26 21:34:23 2018

@author: 杨玉林
"""

import cv2

from face_train_use_keras import Model

if __name__ == '__main__':
    model = Model()
    model.load_model(file_path='D:\\face detection\\data\\me.face.model.h5')

    color = (0, 255, 0)

    cap = cv2.VideoCapture(0)

    cascade_path = 'D:\\jiance\\opencv\\build\\etc\\haarcascades\\haarcascade_frontalface_alt2.xml'

    while True:
        _, frame = cap.read()

        frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

        cascade = cv2.CascadeClassifier(cascade_path)

        faceRects = cascade.detectMultiScale(frame_gray,
                                             scaleFactor=1.2,
                                             minNeighbors=3,