示例#1
0
文件: compare.py 项目: 21hub/facenet
def main():
    align = align_dlib.AlignDlib(os.path.expanduser(FLAGS.dlib_face_predictor))
    batch_size = 2
    image_paths = [FLAGS.image1, FLAGS.image2]
    landmarkIndices = align_dlib.AlignDlib.OUTER_EYES_AND_NOSE

    with tf.Graph().as_default():

        # Placeholder for input images
        images_placeholder = tf.placeholder(tf.float32, shape=(batch_size, FLAGS.image_size, FLAGS.image_size, 3), name='input')
          
        # Placeholder for phase_train
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
          
        # Build the inference graph
        embeddings = facenet.inference_nn4_max_pool_96(images_placeholder, FLAGS.pool_type, FLAGS.use_lrn, 
                                                       1.0, phase_train=phase_train_placeholder)
          
        # Create a saver for restoring variable averages
        ema = tf.train.ExponentialMovingAverage(1.0)
        saver = tf.train.Saver(ema.variables_to_restore())
        
        with tf.Session() as sess:
      
            ckpt = tf.train.get_checkpoint_state(os.path.expanduser(FLAGS.model_dir))
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)
            else:
                raise ValueError('Checkpoint not found')
    
            images = load_and_align_data(image_paths, FLAGS.image_size, align, landmarkIndices)
            feed_dict = { images_placeholder: images, phase_train_placeholder: False }
            emb = sess.run(embeddings, feed_dict=feed_dict)
            dist = np.sqrt(np.mean(np.square(np.subtract(emb[0,:], emb[1,:]))))
            print('Distance between the embeddings: %3.6f' % dist)
示例#2
0
def main():
    
    
    pairs = read_pairs(os.path.expanduser(FLAGS.lfw_pairs))
    paths, actual_issame = get_paths(os.path.expanduser(FLAGS.lfw_dir), pairs)
    
    with tf.Graph().as_default():

        # Creates graph from saved GraphDef
        #  NOTE: This does not work at the moment. Needs tensorflow to store variables in the graph_def.
#         graphdef_filename = os.path.join(os.path.expanduser(FLAGS.model_dir), 'graphdef', 'graph_def.pb')
#         with gfile.FastGFile(graphdef_filename, 'rb') as f:
#             graph_def = tf.GraphDef()
#             graph_def.ParseFromString(f.read())
#             images_placeholder, phase_train_placeholder, embeddings = tf.import_graph_def(graph_def, return_elements = ['input', 'phase_train', 'embeddings'], name='')

        # Placeholder for input images
        images_placeholder = tf.placeholder(tf.float32, shape=(FLAGS.batch_size, FLAGS.image_size, FLAGS.image_size, 3), name='input')
          
        # Placeholder for phase_train
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
          
        # Build the inference graph
        embeddings = facenet.inference_nn4_max_pool_96(images_placeholder, FLAGS.pool_type, FLAGS.use_lrn, 
                                                       1.0, phase_train=phase_train_placeholder)
          
        # Create a saver for restoring variable averages
        ema = tf.train.ExponentialMovingAverage(1.0)
        saver = tf.train.Saver(ema.variables_to_restore())
        
        with tf.Session() as sess:
      
            ckpt = tf.train.get_checkpoint_state(os.path.expanduser(FLAGS.model_dir))
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)
            else:
                raise ValueError('Checkpoint not found')
    
            nrof_images = len(paths)
            nrof_batches = int(nrof_images / FLAGS.batch_size)  # Run forward pass on the remainder in the last batch
            emb_list = []
            for i in range(nrof_batches):
                start_time = time.time()
                paths_batch = paths[i*FLAGS.batch_size:(i+1)*FLAGS.batch_size]
                images = facenet.load_data(paths_batch, False, False, FLAGS.image_size)
                feed_dict = { images_placeholder: images, phase_train_placeholder: False }
                emb_list += sess.run([embeddings], feed_dict=feed_dict)
                duration = time.time() - start_time
                print('Calculated embeddings for batch %d of %d: time=%.3f seconds' % (i+1,nrof_batches, duration))
            emb_array = np.vstack(emb_list)  # Stack the embeddings to a nrof_examples_per_epoch x 128 matrix
            
            thresholds = np.arange(0, 4, 0.01)
            embeddings1 = emb_array[0::2]
            embeddings2 = emb_array[1::2]
            tpr, fpr, accuracy = facenet.calculate_roc(thresholds, embeddings1, embeddings2, np.asarray(actual_issame), FLAGS.seed)
            print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy)))
            facenet.plot_roc(fpr, tpr, 'NN4')
示例#3
0
def main():
    align = align_dlib.AlignDlib(os.path.expanduser(FLAGS.dlib_face_predictor))
    batch_size = 2
    image_paths = [FLAGS.image1, FLAGS.image2]
    landmarkIndices = align_dlib.AlignDlib.OUTER_EYES_AND_NOSE

    with tf.Graph().as_default():

        # Placeholder for input images
        images_placeholder = tf.placeholder(tf.float32,
                                            shape=(batch_size,
                                                   FLAGS.image_size,
                                                   FLAGS.image_size, 3),
                                            name='input')

        # Placeholder for phase_train
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')

        # Build the inference graph
        embeddings = facenet.inference_nn4_max_pool_96(
            images_placeholder,
            FLAGS.pool_type,
            FLAGS.use_lrn,
            1.0,
            phase_train=phase_train_placeholder)

        # Create a saver for restoring variable averages
        ema = tf.train.ExponentialMovingAverage(1.0)
        saver = tf.train.Saver(ema.variables_to_restore())

        with tf.Session() as sess:

            ckpt = tf.train.get_checkpoint_state(
                os.path.expanduser(FLAGS.model_dir))
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)
            else:
                raise ValueError('Checkpoint not found')

            images = load_and_align_data(image_paths, FLAGS.image_size, align,
                                         landmarkIndices)
            feed_dict = {
                images_placeholder: images,
                phase_train_placeholder: False
            }
            emb = sess.run(embeddings, feed_dict=feed_dict)
            dist = np.sqrt(
                np.mean(np.square(np.subtract(emb[0, :], emb[1, :]))))
            print('Distance between the embeddings: %3.6f' % dist)
def main():
    
    # Creates graph from saved GraphDef
    #  NOTE: This does not work at the moment. Needs tensorflow to store variables in the graph_def.
    #create_graph(os.path.join(FLAGS.model_dir, 'graphdef', 'graph_def.pb'))
    
    pairs = read_pairs(os.path.expanduser(FLAGS.lfw_pairs))
    paths, actual_issame = get_paths(os.path.expanduser(FLAGS.lfw_dir), pairs)
    
    mpl.interactive(True)
    
    with tf.Graph().as_default():

        # Placeholder for input images
        images_placeholder = tf.placeholder(tf.float32, shape=(FLAGS.batch_size, FLAGS.image_size, FLAGS.image_size, 3), name='Input')
        
        # Placeholder for phase_train
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
        
        # Build the inference graph
        embeddings = facenet.inference_nn4_max_pool_96(images_placeholder, phase_train=phase_train_placeholder)
        
        # Create a saver for restoring variable averages
        ema = tf.train.ExponentialMovingAverage(1.0)
        saver = tf.train.Saver(ema.variables_to_restore())
    
        with tf.Session() as sess:
    
            ckpt = tf.train.get_checkpoint_state(os.path.expanduser(FLAGS.model_dir))
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)
            else:
                raise ValueError('Checkpoint not found')
            
            # Run test on LFW to check accuracy for different horizontal/vertical translations of input images
            if True:
                offsets = np.arange(-30, 31, 3)
                horizontal_offset_accuracy = [None] * len(offsets)
                for idx, offset in enumerate(offsets):
                    accuracy = evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, embeddings, paths, actual_issame, translate_images, (offset,0))
                    print('Hoffset: %1.3f  Accuracy: %1.3f%c%1.3f' % (offset, np.mean(accuracy), u"\u00B1", np.std(accuracy)))
                    horizontal_offset_accuracy[idx] = np.mean(accuracy)
                vertical_offset_accuracy = [None] * len(offsets)
                for idx, offset in enumerate(offsets):
                    accuracy = evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, embeddings, paths, actual_issame, translate_images, (0,offset))
                    print('Voffset: %1.3f  Accuracy: %1.3f%c%1.3f' % (offset, np.mean(accuracy), u"\u00B1", np.std(accuracy)))
                    vertical_offset_accuracy[idx] = np.mean(accuracy)
                fig = plt.figure(1)
                plt.plot(offsets, horizontal_offset_accuracy, label='Horizontal')
                plt.plot(offsets, vertical_offset_accuracy, label='Vertical')
                plt.legend()
                plt.grid(True)
                plt.title('Translation invariance on LFW')
                plt.xlabel('Offset [pixels]')
                plt.ylabel('Accuracy')
                plt.show()
                result_dir = os.path.expanduser(FLAGS.model_dir)
                print('Saving results in %s' % result_dir)
                fig.savefig(os.path.join(result_dir, 'invariance_translation.png'))
                save_result(offsets, horizontal_offset_accuracy, os.path.join(result_dir, 'invariance_translation_horizontal.txt'))
                save_result(offsets, vertical_offset_accuracy, os.path.join(result_dir, 'invariance_translation_vertical.txt'))

            # Run test on LFW to check accuracy for different rotation of input images
            if True:
                angles = np.arange(-30, 31, 3)
                rotation_accuracy = [None] * len(angles)
                for idx, angle in enumerate(angles):
                    accuracy = evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, embeddings, paths, actual_issame, rotate_images, angle)
                    print('Angle: %1.3f  Accuracy: %1.3f%c%1.3f' % (angle, np.mean(accuracy), u"\u00B1", np.std(accuracy)))
                    rotation_accuracy[idx] = np.mean(accuracy)
                fig = plt.figure(2)
                plt.plot(angles, rotation_accuracy)
                plt.grid(True)
                plt.title('Rotation invariance on LFW')
                plt.xlabel('Angle [deg]')
                plt.ylabel('Accuracy')
                plt.show()
                result_dir = os.path.expanduser(FLAGS.model_dir)
                print('Saving results in %s' % result_dir)
                fig.savefig(os.path.join(result_dir, 'invariance_rotation.png'))
                save_result(angles, rotation_accuracy, os.path.join(result_dir, 'invariance_rotation.txt'))

            # Run test on LFW to check accuracy for different scaling of input images
            if True:
                scales = np.arange(0.5, 1.5, 0.05)
                scale_accuracy = [None] * len(scales)
                for scale_idx, scale in enumerate(scales):
                    accuracy = evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, embeddings, paths, actual_issame, scale_images, scale)
                    print('Scale: %1.3f  Accuracy: %1.3f%c%1.3f' % (scale, np.mean(accuracy), u"\u00B1", np.std(accuracy)))
                    scale_accuracy[scale_idx] = np.mean(accuracy)
                fig = plt.figure(3)
                plt.plot(scales, scale_accuracy)
                plt.grid(True)
                plt.title('Scale invariance on LFW')
                plt.xlabel('Scale')
                plt.ylabel('Accuracy')
                plt.show()
                result_dir = os.path.expanduser(FLAGS.model_dir)
                print('Saving results in %s' % result_dir)
                fig.savefig(os.path.join(result_dir, 'invariance_scale.png'))
                save_result(scales, scale_accuracy, os.path.join(result_dir, 'invariance_scale.txt'))
示例#5
0
def main(argv=None):  # pylint: disable=unused-argument
    if FLAGS.model_name:
        subdir = FLAGS.model_name
        preload_model = True
    else:
        subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
        preload_model = False
    log_dir = os.path.join(os.path.expanduser(FLAGS.logs_base_dir), subdir)
    model_dir = os.path.join(os.path.expanduser(FLAGS.models_base_dir), subdir)
    if not os.path.isdir(model_dir):  # Create the model directory if it doesn't exist
        os.mkdir(model_dir)
    
    np.random.seed(seed=FLAGS.seed)
    dataset = facenet.get_dataset(FLAGS.data_dir)
    train_set, validation_set = facenet.split_dataset(dataset, FLAGS.train_set_fraction, FLAGS.split_mode)
    
    print('Model directory: %s' % model_dir)

    with tf.Graph().as_default():
        tf.set_random_seed(FLAGS.seed)
        global_step = tf.Variable(0, trainable=False)

        # Placeholder for input images
        images_placeholder = tf.placeholder(tf.float32, shape=(FLAGS.batch_size, FLAGS.image_size, FLAGS.image_size, 3),
                                            name='input')

        # Placeholder for phase_train
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')

        # Build the inference graph
        embeddings = facenet.inference_nn4_max_pool_96(images_placeholder, phase_train=phase_train_placeholder)

        # Split example embeddings into anchor, positive and negative
        anchor, positive, negative = tf.split(0, 3, embeddings)

        # Calculate triplet loss
        loss = facenet.triplet_loss(anchor, positive, negative)

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_op, _ = facenet.train(loss, global_step)

        # Create a saver
        saver = tf.train.Saver(tf.all_variables(), max_to_keep=0)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.merge_all_summaries()

        # Build an initialization operation to run below.
        init = tf.initialize_all_variables()

        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement))
        sess.run(init)

        summary_writer = tf.train.SummaryWriter(log_dir, sess.graph)

        with sess.as_default():

            if preload_model:
                ckpt = tf.train.get_checkpoint_state(model_dir)
                if ckpt and ckpt.model_checkpoint_path:
                    saver.restore(sess, ckpt.model_checkpoint_path)
                else:
                    raise ValueError('Checkpoint not found')

            # Training and validation loop
            for epoch in range(FLAGS.max_nrof_epochs):
                # Train for one epoch
                step = train(sess, train_set, epoch, images_placeholder, phase_train_placeholder,
                             global_step, embeddings, loss, train_op, summary_op, summary_writer)
                # Validate epoch
                validate(sess, validation_set, epoch, images_placeholder, phase_train_placeholder,
                         global_step, embeddings, loss, train_op, summary_op, summary_writer)

                # Save the model checkpoint after each epoch
                print('Saving checkpoint')
                checkpoint_path = os.path.join(model_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
                graphdef_dir = os.path.join(model_dir, 'graphdef')
                graphdef_filename = 'graph_def.pb'
                if (not os.path.exists(os.path.join(graphdef_dir, graphdef_filename))):
                    print('Saving graph definition')
                    tf.train.write_graph(sess.graph_def, graphdef_dir, graphdef_filename, False)
示例#6
0
def main(argv=None):  # pylint: disable=unused-argument
    if FLAGS.model_name:
        subdir = FLAGS.model_name
        preload_model = True
    else:
        subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
        preload_model = False
    log_dir = os.path.join(os.path.expanduser(FLAGS.logs_base_dir), subdir)
    if not os.path.isdir(
            log_dir):  # Create the log directory if it doesn't exist
        os.mkdir(log_dir)
    model_dir = os.path.join(os.path.expanduser(FLAGS.models_base_dir), subdir)
    if not os.path.isdir(
            model_dir):  # Create the model directory if it doesn't exist
        os.mkdir(model_dir)

    # Store some git revision info in a text file in the log directory
    src_path, _ = os.path.split(os.path.realpath(__file__))
    store_training_info(src_path, log_dir, ' '.join(argv))

    np.random.seed(seed=FLAGS.seed)
    dataset = facenet.get_dataset(FLAGS.data_dir)
    train_set, validation_set = facenet.split_dataset(dataset,
                                                      FLAGS.train_set_fraction,
                                                      FLAGS.split_mode)

    print('Model directory: %s' % model_dir)

    with tf.Graph().as_default():
        tf.set_random_seed(FLAGS.seed)
        global_step = tf.Variable(0, trainable=False)

        # Placeholder for input images
        images_placeholder = tf.placeholder(tf.float32,
                                            shape=(FLAGS.batch_size,
                                                   FLAGS.image_size,
                                                   FLAGS.image_size, 3),
                                            name='input')

        # Placeholder for phase_train
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')

        # Build the inference graph
        embeddings = facenet.inference_nn4_max_pool_96(
            images_placeholder,
            FLAGS.pool_type,
            FLAGS.use_lrn,
            FLAGS.keep_probability,
            phase_train=phase_train_placeholder)

        # Split example embeddings into anchor, positive and negative
        anchor, positive, negative = tf.split(0, 3, embeddings)

        # Calculate triplet loss
        loss = facenet.triplet_loss(anchor, positive, negative, FLAGS.alpha)

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_op, _ = facenet.train(loss, global_step, FLAGS.optimizer,
                                    FLAGS.learning_rate,
                                    FLAGS.moving_average_decay)

        # Create a saver
        saver = tf.train.Saver(tf.all_variables(), max_to_keep=0)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.merge_all_summaries()

        # Build an initialization operation to run below.
        init = tf.initialize_all_variables()

        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(
            log_device_placement=FLAGS.log_device_placement))
        sess.run(init)

        summary_writer = tf.train.SummaryWriter(log_dir, sess.graph)

        with sess.as_default():

            if preload_model:
                ckpt = tf.train.get_checkpoint_state(model_dir)
                if ckpt and ckpt.model_checkpoint_path:
                    saver.restore(sess, ckpt.model_checkpoint_path)
                else:
                    raise ValueError('Checkpoint not found')

            # Training and validation loop
            for epoch in range(FLAGS.max_nrof_epochs):
                # Train for one epoch
                step = train(sess, train_set, epoch, images_placeholder,
                             phase_train_placeholder, global_step, embeddings,
                             loss, train_op, summary_op, summary_writer)
                # Test on validation set
                validate(sess, validation_set, epoch, images_placeholder,
                         phase_train_placeholder, global_step, embeddings,
                         loss, 'validation', summary_writer)
                # Test on training set
                validate(sess, train_set, epoch, images_placeholder,
                         phase_train_placeholder, global_step, embeddings,
                         loss, 'training', summary_writer)

                if (epoch % FLAGS.checkpoint_period
                        == 0) or (epoch == FLAGS.max_nrof_epochs - 1):
                    # Save the model checkpoint
                    print('Saving checkpoint')
                    checkpoint_path = os.path.join(model_dir, 'model.ckpt')
                    saver.save(sess, checkpoint_path, global_step=step)

                # Save the model if it hasn't been saved before
                graphdef_dir = os.path.join(model_dir, 'graphdef')
                graphdef_filename = 'graph_def.pb'
                if (not os.path.exists(
                        os.path.join(graphdef_dir, graphdef_filename))):
                    print('Saving graph definition')
                    tf.train.write_graph(sess.graph_def, graphdef_dir,
                                         graphdef_filename, False)
def main():
    
    # Creates graph from saved GraphDef
    #  NOTE: This does not work at the moment. Needs tensorflow to store variables in the graph_def.
    #create_graph(os.path.join(FLAGS.model_dir, 'graphdef', 'graph_def.pb'))
    
    pairs = read_pairs(os.path.expanduser(FLAGS.lfw_pairs))
    paths, actual_issame = get_paths(os.path.expanduser(FLAGS.lfw_dir), pairs)
    
    mpl.interactive(True)
    
    with tf.Graph().as_default():

        global_step = tf.Variable(0, trainable=False)
    
        # Placeholder for input images
        images_placeholder = tf.placeholder(tf.float32, shape=(FLAGS.batch_size, FLAGS.image_size, FLAGS.image_size, 3), name='Input')
        
        # Placeholder for phase_train
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
        
        # Build the inference graph
        embeddings = facenet.inference_nn4_max_pool_96(images_placeholder, phase_train=phase_train_placeholder)
        
        # Create a saver for restoring variable averages
        ema = tf.train.ExponentialMovingAverage(1.0)
        saver = tf.train.Saver(ema.variables_to_restore())
    
        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(log_device_placement=False))
        
        with tf.Session() as sess:
    
            ckpt = tf.train.get_checkpoint_state(os.path.expanduser(FLAGS.model_dir))
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)
            else:
                raise ValueError('Checkpoint not found')
            
            # Run test on LFW to check accuracy for different horizontal/vertical translations of input images
            if True:
                offsets = np.arange(-30, 31, 3)
                horizontal_offset_accuracy = [None] * len(offsets)
                for idx, offset in enumerate(offsets):
                    accuracy = evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, embeddings, paths, actual_issame, translate_images, (offset,0))
                    print('Hoffset: %1.3f  Accuracy: %1.3f%c%1.3f' % (offset, np.mean(accuracy), u"\u00B1", np.std(accuracy)))
                    horizontal_offset_accuracy[idx] = np.mean(accuracy)
                vertical_offset_accuracy = [None] * len(offsets)
                for idx, offset in enumerate(offsets):
                    accuracy = evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, embeddings, paths, actual_issame, translate_images, (0,offset))
                    print('Voffset: %1.3f  Accuracy: %1.3f%c%1.3f' % (offset, np.mean(accuracy), u"\u00B1", np.std(accuracy)))
                    vertical_offset_accuracy[idx] = np.mean(accuracy)
                fig = plt.figure(1)
                plt.plot(offsets, horizontal_offset_accuracy, label='Horizontal')
                plt.plot(offsets, vertical_offset_accuracy, label='Vertical')
                plt.legend()
                plt.grid(True)
                plt.title('Translation invariance on LFW')
                plt.xlabel('Offset [pixels]')
                plt.ylabel('Accuracy')
                plt.show()
                result_dir = os.path.expanduser(FLAGS.model_dir)
                print('Saving results in %s' % result_dir)
                fig.savefig(os.path.join(result_dir, 'invariance_translation.png'))
                save_result(offsets, horizontal_offset_accuracy, os.path.join(result_dir, 'invariance_translation_horizontal.txt'))
                save_result(offsets, vertical_offset_accuracy, os.path.join(result_dir, 'invariance_translation_vertical.txt'))
                xxx = 1

            # Run test on LFW to check accuracy for different rotation of input images
            if True:
                angles = np.arange(-30, 31, 3)
                rotation_accuracy = [None] * len(angles)
                for idx, angle in enumerate(angles):
                    accuracy = evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, embeddings, paths, actual_issame, rotate_images, angle)
                    print('Angle: %1.3f  Accuracy: %1.3f%c%1.3f' % (angle, np.mean(accuracy), u"\u00B1", np.std(accuracy)))
                    rotation_accuracy[idx] = np.mean(accuracy)
                fig = plt.figure(2)
                plt.plot(angles, rotation_accuracy)
                plt.grid(True)
                plt.title('Rotation invariance on LFW')
                plt.xlabel('Angle [deg]')
                plt.ylabel('Accuracy')
                plt.show()
                result_dir = os.path.expanduser(FLAGS.model_dir)
                print('Saving results in %s' % result_dir)
                fig.savefig(os.path.join(result_dir, 'invariance_rotation.png'))
                save_result(angles, rotation_accuracy, os.path.join(result_dir, 'invariance_rotation.txt'))
                xxx = 1

            # Run test on LFW to check accuracy for different scaling of input images
            if True:
                scales = np.arange(0.5, 1.5, 0.05)
                scale_accuracy = [None] * len(scales)
                for scale_idx, scale in enumerate(scales):
                    accuracy = evaluate_accuracy(sess, images_placeholder, phase_train_placeholder, embeddings, paths, actual_issame, scale_images, scale)
                    print('Scale: %1.3f  Accuracy: %1.3f%c%1.3f' % (scale, np.mean(accuracy), u"\u00B1", np.std(accuracy)))
                    scale_accuracy[scale_idx] = np.mean(accuracy)
                fig = plt.figure(3)
                plt.plot(scales, scale_accuracy)
                plt.grid(True)
                plt.title('Scale invariance on LFW')
                plt.xlabel('Scale')
                plt.ylabel('Accuracy')
                plt.show()
                result_dir = os.path.expanduser(FLAGS.model_dir)
                print('Saving results in %s' % result_dir)
                fig.savefig(os.path.join(result_dir, 'invariance_scale.png'))
                save_result(scales, scale_accuracy, os.path.join(result_dir, 'invariance_scale.txt'))
                xxx = 1