def _test_consolidated_optimizer(self, config, rank, group, optim_fn=torch.optim.SGD, transformer=False): """FSDP.gather_full_optim_state_dict() should return something very similar to optimizer.state_dict()""" # Establish reference behavior. if transformer: fsdp = self.get_wrapped_model(group, config=config).cuda() unwrapped_model = TransformerWithSharedParams(group).cuda() else: fsdp = FullyShardedDataParallel( NestedWrappedModule(group, wrapper_config=config), group, **config).cuda() unwrapped_model = NestedWrappedModule(group, wrapper_config=None).cuda() try: fsdp_optim = optim_fn( fsdp.parameters(), lr=0.01, ) optim_unwrapped = optim_fn(unwrapped_model.parameters(), lr=0.01) except TypeError: # Adadelta fsdp_optim = optim_fn(fsdp.parameters()) optim_unwrapped = optim_fn(unwrapped_model.parameters()) fsdp_optim.zero_grad() optim_unwrapped.zero_grad() x = fsdp.module.get_input(torch.device("cuda")) output = fsdp(*x) loss = fsdp.module.get_loss(x, output).to("cuda") fsdp.module.run_backward(loss) fsdp_optim.step() output = unwrapped_model(*x) loss = unwrapped_model.get_loss(x, output) unwrapped_model.run_backward(loss) optim_unwrapped.step() unwrapped_sd = optim_unwrapped.state_dict() tstart = time() sd = fsdp.gather_full_optim_state_dict(fsdp_optim, recipient_rank=0) duration = time() - tstart # Switching from fairscale.optim.utils.broadcast_object to torch.broadcast_object_list will cause this to raise assert duration < fsdp.world_size, f"gather optim state took {duration} seconds, suspect change in _consolidate" if fsdp.rank > 0: return assert_equal(len(sd["state"]), len(unwrapped_sd["state"])) assert_equal(len(sd["param_groups"][0]["params"]), len(unwrapped_sd["param_groups"][0]["params"])) assert_equal( sum([first_tensor_numel(v) for k, v in sd["state"].items()]), sum([ first_tensor_numel(v) for k, v in unwrapped_sd["state"].items() ]), ) shard_sd = fsdp.get_shard_from_optim_state_dict(sd) original_shard_sd = fsdp_optim.state_dict() assert_equal(len(shard_sd["state"]), len(original_shard_sd["state"])) assert_equal(shard_sd.keys(), original_shard_sd.keys()) original_shard_sd = recursive_copy_to_device(original_shard_sd, non_blocking=False, device="cpu") assert_equal( sum([first_tensor_numel(v) for k, v in shard_sd["state"].items()]), sum([ first_tensor_numel(v) for k, v in original_shard_sd["state"].items() ]), ) assert objects_are_equal(shard_sd, original_shard_sd)
def _test_consolidated_optimizer(self, config, rank, group, optim_fn=torch.optim.SGD, transformer=False): """FSDP.gather_full_optim_state_dict() should return something very similar to optimizer.state_dict()""" # Establish reference behavior. if transformer: unwrapped_model = TransformerWithSharedParams( group, wrapper_config=config).cuda() fsdp = self.get_wrapped_model(group, config=config).cuda() else: unwrapped_model = MixtureOfExperts(group, wrapper_config=None).cuda() fsdp = FullyShardedDataParallel( MixtureOfExperts(group, wrapper_config=config)).cuda() try: fsdp_optim = optim_fn( fsdp.parameters(), lr=0.01, ) optim_unwrapped = optim_fn(unwrapped_model.parameters(), lr=0.01) except TypeError: # Adadelta fsdp_optim = optim_fn(fsdp.parameters()) optim_unwrapped = optim_fn(unwrapped_model.parameters()) fsdp_optim.zero_grad() optim_unwrapped.zero_grad() with torch.cuda.amp.autocast(enabled=True): x = fsdp.module.get_input(torch.device("cuda")) output = fsdp(*x) loss = fsdp.module.get_loss(x, output).to("cuda") fsdp.module.run_backward(loss) fsdp_optim.step() output = unwrapped_model(*x) loss = unwrapped_model.get_loss(x, output) unwrapped_model.run_backward(loss) optim_unwrapped.step() unwrapped_sd = optim_unwrapped.state_dict() if not transformer: no_broadcast_children = [ x for x in fsdp._fsdp_instances if x.no_broadcast_optim_state ] assert len(no_broadcast_children) == 1 assert fsdp._fsdp_instances[-1].no_broadcast_optim_state torch.cuda.empty_cache() cuda_gb_before = torch.cuda.memory_stats( fsdp.rank)["allocated_bytes.all.current"] / 1024**3 tstart = time() sd = fsdp.gather_full_optim_state_dict(fsdp_optim, recipient_rank=0) duration = time() - tstart assert duration < fsdp.world_size, f"gather optim state took {duration} seconds, suspect change in _consolidate" cuda_gb_after = torch.cuda.memory_stats( fsdp.rank)["allocated_bytes.all.current"] / 1024**3 mem_usg_gb = cuda_gb_after - cuda_gb_before assert mem_usg_gb == 0, f"gather_full_optim_state_dict used {mem_usg_gb:.2f} CUDA GB, max allowed is 0" assert cuda_gb_after > 0, "got 0 memory usage, logging is broken" if fsdp.rank > 0: assert sd is None return # assert whole state dict on CPU for k, v in sd["state"].items(): for buffer_name, t in v.items(): if torch.is_tensor(t): msg = f"got device {t.device} for {k}: {buffer_name}. expected CPU" assert t.device == torch.device("cpu"), msg unflat_state = sd["state"] assert "uncollected_local_ids" in sd shard_sd = fsdp.get_shard_from_optim_state_dict(sd) shard_sd = recursive_copy_to_device(shard_sd, non_blocking=False, device="cpu") state_after_get_shard = sd["state"] assert objects_are_equal(unflat_state, state_after_get_shard) # no side effects. assert_equal(len(sd["state"]), len(unwrapped_sd["state"])) assert_equal(len(sd["param_groups"][0]["params"]), len(unwrapped_sd["param_groups"][0]["params"])) assert_equal( sum([first_tensor_numel(v) for k, v in sd["state"].items()]), sum([ first_tensor_numel(v) for k, v in unwrapped_sd["state"].items() ]), ) original_shard_sd = fsdp_optim.state_dict() assert_equal(len(shard_sd["state"]), len(original_shard_sd["state"])) assert_equal(shard_sd.keys(), original_shard_sd.keys()) original_shard_sd = recursive_copy_to_device(original_shard_sd, non_blocking=False, device="cpu") # Before asserting that the dicts are equal, we check keys individually to allow nice tracebacks. assert_equal( [first_tensor_numel(v) for k, v in shard_sd["state"].items()], [ first_tensor_numel(v) for k, v in original_shard_sd["state"].items() ], ) assert_equal( [v for k, v in shard_sd["param_groups"][0].items()], [v for k, v in original_shard_sd["param_groups"][0].items()], ) assert objects_are_equal(shard_sd["state"], original_shard_sd["state"]) assert objects_are_equal({k: shard_sd[k] for k in original_shard_sd}, original_shard_sd)