def load_dataset(self, split, epoch=1, combine=False): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ loaded_datasets = [] paths = utils.split_paths(self.args.data) assert len(paths) > 0 data_path = paths[(epoch - 1) % len(paths)] logger.info("data_path", data_path) for k in itertools.count(): split_k = split + (str(k) if k > 0 else '') path = os.path.join(data_path, split_k) ds = indexed_dataset.make_dataset( path, impl=self.args.dataset_impl, fix_lua_indexing=True, dictionary=self.dictionary, ) if ds is None: if k > 0: break else: raise FileNotFoundError( 'Dataset not found: {} ({})'.format(split, data_path)) with data_utils.numpy_seed(self.seed + k): loaded_datasets.append( BlockPairDataset( ds, self.dictionary, ds.sizes, self.args.tokens_per_sample, break_mode=self.args.break_mode, doc_break_size=1, )) logger.info('{} {} {} examples都是非常重要的例子'.format( data_path, split_k, len(loaded_datasets[-1]))) if not combine: break if len(loaded_datasets) == 1: dataset = loaded_datasets[0] sizes = dataset.sizes else: dataset = ConcatDataset(loaded_datasets) sizes = np.concatenate([ds.sizes for ds in loaded_datasets]) self.datasets[split] = MaskedLMDataset( dataset=dataset, sizes=sizes, vocab=self.dictionary, pad_idx=self.dictionary.pad(), mask_idx=self.dictionary.mask(), classif_token_idx=self.dictionary.cls(), sep_token_idx=self.dictionary.sep(), shuffle=self.args.shuffle_dataset, seed=self.seed, )
def load_dataset(self, split, combine=False): """ Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ loaded_datasets = [] for k in itertools.count(): split_k = split + (str(k) if k > 0 else '') path = os.path.join(self.args.data, split_k) if self.args.raw_text and IndexedRawTextDataset.exists(path): ds = IndexedRawTextDataset(path, self.dictionary) elif not self.args.raw_text and IndexedDataset.exists(path): if self.args.lazy_load: ds = IndexedDataset(path, fix_lua_indexing=True) else: ds = IndexedCachedDataset(path, fix_lua_indexing=True) else: if k > 0: break else: raise FileNotFoundError( 'Dataset not found: {} ({})'.format( split, self.args.data)) with data_utils.numpy_seed(self.seed + k): loaded_datasets.append( BlockPairDataset( ds, self.dictionary, ds.sizes, self.args.tokens_per_sample, break_mode=self.args.break_mode, )) logger.info('{} {} {} examples'.format(self.args.data, split_k, len(loaded_datasets[-1]))) if not combine: break if len(loaded_datasets) == 1: dataset = loaded_datasets[0] sizes = dataset.sizes else: dataset = ConcatDataset(loaded_datasets) sizes = np.concatenate([ds.sizes for ds in loaded_datasets]) self.datasets[split] = MaskedLMDataset( dataset=dataset, sizes=sizes, vocab=self.dictionary, pad_idx=self.dictionary.pad(), mask_idx=self.dictionary.mask(), classif_token_idx=self.dictionary.cls(), sep_token_idx=self.dictionary.sep(), shuffle=False, seed=self.seed, )