示例#1
0
class NLUFinetuningConfig(AudioPretrainingConfig):
    # Options for reporting WER metrics during validation. Only applicable to
    # Seq2Seq models during fine-tuning
    eval_wer: bool = field(
        default=False, metadata={"help": "compute WER for Seq2Seq models"}
    )
    eval_wer_parse: bool = field(
        default=False, metadata={"help": "compute WER for Seq2Seq models"}
    )
    eval_wer_config: GenerationConfig = field(
        default_factory=lambda: GenerationConfig(),
        metadata={"help": "beam search config for evaluating wer during training"},
    )
    eval_wer_tokenizer: Any = field(
        default=None,
        metadata={"help": "tokenizer config for evaluating wer during training"},
    )
    eval_wer_post_process: str = field(
        default="letter",
        metadata={
            "help": "remove BPE tokens before scoring (can be sentencepiece, letter, and more)"
        },
    )
    eval_bleu: bool = field(
        default=False, metadata={"help": "evaluation with BLEU scores"}
    )
    eval_bleu_detok: Optional[str] = field(
        default=None,
        metadata={
            "help": "detokenize before computing BLEU (e.g., 'moses'); "
            "required if using --eval-bleu; use 'space' to disable "
            "detokenization; see fairseq.data.encoders for other options"
        },
    )
    eval_bleu_detok_args: str = field(
        default="{}", metadata={"help": "args for building the tokenizer, if needed"}
    )
    eval_tokenized_bleu: bool = field(
        default=False, metadata={"help": "compute tokenized BLEU instead of sacrebleu"}
    )
    eval_bleu_remove_bpe: Optional[str] = field(
        default=None, metadata={"help": "remove BPE before computing BLEU"}
    )
    eval_bleu_args: str = field(
        default="{}",
        metadata={
            "help": "generation args for BLUE scoring, e.g., "
            '\'{"beam": 4, "lenpen": 0.6}\''
        },
    )
    eval_bleu_print_samples: bool = field(
        default=False, metadata={"help": "print sample generations during validation"}
    )
    autoregressive: bool = field(
        default=False,
        metadata={
            "help": "required for autoregressive decoders (like seq2seq models); "
            "adds 'prev_output_tokens' to input and appends eos to target"
        },
    )
示例#2
0
class InferConfig(FairseqDataclass):
    task: Any = None
    decoding: DecodingConfig = DecodingConfig()
    common: CommonConfig = CommonConfig()
    common_eval: CommonEvalConfig = CommonEvalConfig()
    checkpoint: CheckpointConfig = CheckpointConfig()
    generation: GenerationConfig = GenerationConfig()
    distributed_training: DistributedTrainingConfig = DistributedTrainingConfig(
    )
    dataset: DatasetConfig = DatasetConfig()
    def build_generator(self, models, cfg: GenerationConfig):
        if cfg.score_reference:
            cfg.score_reference = False
            logger.warning(
                "--score-reference is not applicable to speech recognition, ignoring it."
            )
        from espresso.tools.generate_log_probs_for_decoding import GenerateLogProbsForDecoding

        apply_log_softmax = getattr(cfg, "apply_log_softmax", False)
        return GenerateLogProbsForDecoding(models,
                                           apply_log_softmax=apply_log_softmax)
示例#4
0
class AudioPretrainingConfig(FairseqDataclass):
    data: str = field(default=MISSING, metadata={"help": "path to data directory"})
    labels: Optional[str] = field(
        default=None,
        metadata={"help": "extension of the label file to load, used for fine-tuning"},
    )
    sample_rate: int = field(
        default=16_000,
        metadata={
            "help": "target sample rate. audio files will be up/down sampled to this rate"
        },
    )
    normalize: bool = field(
        default=False,
        metadata={"help": "if set, normalizes input to have 0 mean and unit variance"},
    )
    enable_padding: bool = field(
        default=False, metadata={"help": "pad shorter samples instead of cropping"}
    )
    max_sample_size: Optional[int] = field(
        default=None, metadata={"help": "max sample size to crop to for batching"}
    )
    min_sample_size: Optional[int] = field(
        default=None, metadata={"help": "min sample size to skip small examples"}
    )

    # Options for reporting WER metrics during validation. Only applicable to
    # Seq2Seq models during fine-tuning
    eval_wer: bool = field(
        default=False, metadata={"help": "compute WER for Seq2Seq models"}
    )
    eval_wer_config: GenerationConfig = field(
        default_factory=lambda: GenerationConfig(),
        metadata={"help": "beam search config for evaluating wer during training"},
    )
    eval_wer_tokenizer: Any = field(
        default=None,
        metadata={"help": "tokenizer config for evaluating wer during training"},
    )
    eval_wer_post_process: str = field(
        default="letter",
        metadata={
            "help": "remove BPE tokens before scoring (can be sentencepiece, letter, and more)"
        },
    )
    autoregressive: bool = field(
        default=False,
        metadata={
            "help": "required for autoregressive decoders (like seq2seq models); "
            "adds 'prev_output_tokens' to input and appends eos to target"
        },
    )
示例#5
0
def add_generation_args(parser):
    group = parser.add_argument_group("Generation")
    add_common_eval_args(group)
    gen_parser_from_dataclass(group, GenerationConfig())
    return group
示例#6
0
class AudioPretrainingConfig(FairseqDataclass):
    data: str = field(default=MISSING, metadata={"help": "path to data directory"})
    label_dir: Optional[str] = field(default=None, metadata={"help": "path to label directory"})
    labels: Optional[str] = field(
        default=None,
        metadata={"help": "extension of the label file to load, used for fine-tuning"},
    )
    binarized_dataset: bool = field(
        default=False,
        metadata={
            "help": "if true, loads binarized dataset (useful for very large datasets). "
            "See examples/wav2vec/scripts/binarize_manifest.sh"
        },
    )
    sample_rate: int = field(
        default=16_000,
        metadata={
            "help": "target sample rate. audio files will be up/down sampled to this rate"
        },
    )
    normalize: bool = field(
        default=False,
        metadata={"help": "if set, normalizes input to have 0 mean and unit variance"},
    )
    enable_padding: bool = field(
        default=False, metadata={"help": "pad shorter samples instead of cropping"}
    )
    max_sample_size: Optional[int] = field(
        default=None, metadata={"help": "max sample size to crop to for batching"}
    )
    min_sample_size: Optional[int] = field(
        default=None, metadata={"help": "min sample size to skip small examples"}
    )

    # Options for reporting WER metrics during validation. Only applicable to
    # Seq2Seq models during fine-tuning
    eval_wer: bool = field(
        default=False, metadata={"help": "compute WER for Seq2Seq models"}
    )
    eval_wer_config: GenerationConfig = field(
        default_factory=lambda: GenerationConfig(),
        metadata={"help": "beam search config for evaluating wer during training"},
    )
    eval_wer_tokenizer: Any = field(
        default=None,
        metadata={"help": "tokenizer config for evaluating wer during training"},
    )
    eval_wer_post_process: str = field(
        default="letter",
        metadata={
            "help": "remove BPE tokens before scoring (can be sentencepiece, letter, and more)"
        },
    )
    autoregressive: bool = field(
        default=False,
        metadata={
            "help": "required for autoregressive decoders (like seq2seq models); "
            "adds 'prev_output_tokens' to input and appends eos to target"
        },
    )
    num_batch_buckets: int = field(
        default=0,
        metadata={"help": "number of buckets"},
    )
    precompute_mask_indices: bool = field(
        default=False,
        metadata={
            "help": "flag to compute mask indices in data preparation.",
        },
    )
    # The following are needed to precompute mask and mask channel indices
    #   before model's forward.
    # mask_length: Optional[int] = II("model.mask_length")
    # mask_prob: Optional[float] = II("model.mask_prob")
    # mask_selection: Optional[str] = II("model.mask_selection")
    # mask_other: Optional[float] = II("model.mask_other")
    # no_mask_overlap: Optional[bool] = II("model.no_mask_overlap")
    # mask_min_space: Optional[int] = II("model.mask_min_space")
    # mask_channel_length: Optional[int] = II("model.mask_channel_length")
    # mask_channel_prob: Optional[float] = II("model.mask_channel_prob")
    # mask_channel_selection: Optional[str] = II("model.mask_channel_selection")
    # mask_channel_other: Optional[float] = II("model.mask_channel_other")
    # no_mask_channel_overlap: Optional[bool] = II("model.no_mask_channel_overlap")
    # mask_channel_min_space: Optional[int] = II("model.mask_channel_min_space")

    # conv_feature_layers: Optional[str] = II("model.conv_feature_layers")
    # encoder_embed_dim: Optional[int] = II("model.encoder_embed_dim")

    tpu: bool = II("common.tpu")
示例#7
0
class AudioPretrainingConfig(FairseqDataclass):
    data: str = field(default=MISSING,
                      metadata={"help": "path to data directory"})
    labels: Optional[str] = field(
        default=None,
        metadata={
            "help": "extension of the label file to load, used for fine-tuning"
        },
    )
    binarized_dataset: bool = field(
        default=False,
        metadata={
            "help":
            "if true, loads binarized dataset (useful for very large datasets). "
            "See examples/wav2vec/scripts/binarize_manifest.sh"
        },
    )
    sample_rate: int = field(
        default=16_000,
        metadata={
            "help":
            "target sample rate. audio files will be up/down sampled to this rate"
        },
    )
    normalize: bool = field(
        default=False,
        metadata={
            "help": "if set, normalizes input to have 0 mean and unit variance"
        },
    )
    enable_padding: bool = field(
        default=False,
        metadata={"help": "pad shorter samples instead of cropping"})
    max_sample_size: Optional[int] = field(
        default=None,
        metadata={"help": "max sample size to crop to for batching"})
    min_sample_size: Optional[int] = field(
        default=None,
        metadata={"help": "min sample size to skip small examples"})

    dataset_sampling_alpha: Optional[float] = field(
        default=0.5,
        metadata={
            "help": "smoothing alpha for sample rations across datasets"
        })

    # Options for reporting WER metrics during validation. Only applicable to
    # Seq2Seq models during fine-tuning
    eval_wer: bool = field(default=False,
                           metadata={"help": "compute WER for Seq2Seq models"})
    eval_wer_config: GenerationConfig = field(
        default_factory=lambda: GenerationConfig(),
        metadata={
            "help": "beam search config for evaluating wer during training"
        },
    )
    eval_wer_tokenizer: Any = field(
        default=None,
        metadata={
            "help": "tokenizer config for evaluating wer during training"
        },
    )
    eval_wer_post_process: str = field(
        default="letter",
        metadata={
            "help":
            "remove BPE tokens before scoring (can be sentencepiece, letter, and more)"
        },
    )
    autoregressive: bool = field(
        default=False,
        metadata={
            "help":
            "required for autoregressive decoders (like seq2seq models); "
            "adds 'prev_output_tokens' to input and appends eos to target"
        },
    )
    num_batch_buckets: int = field(
        default=0,
        metadata={"help": "number of buckets"},
    )
    precompute_mask_indices: bool = field(
        default=False,
        metadata={
            "help": "flag to compute mask indices in data preparation.",
        },
    )

    inferred_w2v_config: Optional[InferredW2vConfig] = field(
        default=None,
        metadata={
            "help":
            "wav2vec 2.0 masking arguments used to pre-compute masks (required for TPU)",
        },
    )

    tpu: bool = II("common.tpu")