def __init__(self, args): super().__init__() self.embedding_dim = args.decoder_embed_dim self.self_attn1 = MultiheadAttention( self.embedding_dim, args.decoder_attention_heads, dropout=args.attention_dropout, ) self.self_attn2 = MultiheadAttention( self.embedding_dim, args.decoder_attention_heads, dropout=args.attention_dropout, ) self.dropout = args.dropout self.relu_dropout = args.relu_dropout self.normalize_before = args.decoder_normalize_before self.self_attn_layer_norm_1 = LayerNorm(self.embedding_dim) self.self_attn_layer_norm_2 = LayerNorm(self.embedding_dim) self.self_attn_layer_norm = LayerNorm(self.embedding_dim * 2) self.fc1 = Linear(self.embedding_dim, args.decoder_ffn_embed_dim) self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embedding_dim) self.final_layer_norm = LayerNorm(self.embedding_dim) self.need_attn = True self.onnx_trace = False
def __init__(self, args): super().__init__() self.embed_dim = args.decoder_embed_dim self.self_attn = BidirectionalMultiheadSelfAttention( self.embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, mask_curr_state=not args.unmask_curr_state, ) self.dropout = args.dropout self.activation_fn = utils.get_activation_fn( activation=getattr(args, 'activation_fn', 'relu')) self.activation_dropout = getattr(args, 'activation_dropout', 0) if self.activation_dropout == 0: # for backwards compatibility with models that use args.relu_dropout self.activation_dropout = getattr(args, 'relu_dropout', 0) self.normalize_before = args.decoder_normalize_before self.fwd_layer_norm = LayerNorm(self.embed_dim, export=args.char_inputs) self.bwd_layer_norm = LayerNorm(self.embed_dim, export=args.char_inputs) self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim) self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim, export=args.char_inputs)
def __init__(self, args, dictionary, embed_tokens, left_pad=True): super().__init__(dictionary) self.dropout = args.dropout embed_dim = embed_tokens.embedding_dim self.padding_idx = embed_tokens.padding_idx self.max_source_positions = args.max_source_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt(embed_dim) self.embed_positions = PositionalEmbedding( args.max_source_positions, embed_dim, self.padding_idx, left_pad=left_pad, learned=args.encoder_learned_pos, ) if not args.no_token_positional_embeddings else None self.layers = nn.ModuleList([]) self.layers.extend([ TransformerEncoderLayer(args) for i in range(args.encoder_layers) ]) self.register_buffer('version', torch.Tensor([2])) self.normalize = args.encoder_normalize_before if self.normalize: self.layer_norm = LayerNorm(embed_dim) self.kernel_size = args.kernel_size self.propagation = args.propagation
def __init__(self, args, is_encoder): super(GruLayerHistory, self).__init__(args, is_encoder) self.count = 0 self.gru = nn.GRUCell(args.encoder_embed_dim, args.encoder_embed_dim) self.gru_cells = [] self.layer_norms = nn.ModuleList( LayerNorm(args.encoder_embed_dim) for _ in range(args.decoder_layers))
def __init__(self, args, is_encoder): super(BaseLayerHistory, self).__init__() self.is_encoder = is_encoder self.normalize_before = args.encoder_normalize_before if is_encoder else args.decoder_normalize_before # the first layer (aka. embedding layer) does not have layer normalization layers = args.encoder_layers if is_encoder else args.decoder_layers dim = args.encoder_embed_dim if is_encoder else args.decoder_embed_dim self.layer_norms = nn.ModuleList(LayerNorm(dim) for _ in range(layers))
def __init__(self, args, no_encoder_attn=False): super().__init__() self.embed_dim = args.decoder_embed_dim self.self_attn = MultiheadAttention( self.embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, ) self.dropout = args.dropout self.relu_dropout = args.relu_dropout self.normalize_before = args.decoder_normalize_before self.self_attn_layer_norm = LayerNorm(self.embed_dim) if no_encoder_attn: self.source_encoder_attn = None self.mask_encoder_attn = None self.encoder_attn_layer_norm = None self.concat_dense = None else: self.source_encoder_attn = MultiheadAttention( self.embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, ) self.mask_encoder_attn = MultiheadAttention( self.embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, ) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim) self.concat_dense = Linear(2 * self.embed_dim, self.embed_dim, bias=True) self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim) self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim) self.need_attn = True self.onnx_trace = False
def __init__(self, args): super().__init__() self.embed_dim = args.decoder_embed_dim self.self_attn = MultiheadAttention( self.embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, add_bias_kv=not args.no_bias_kv, add_zero_attn=args.no_bias_kv, ) self.dropout = args.dropout self.relu_dropout = args.relu_dropout self.normalize_before = args.decoder_normalize_before self.self_attn_layer_norm = LayerNorm(self.embed_dim) self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim) self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim)
def __init__(self, args): super().__init__() self.embed_dim = args.decoder_embed_dim self.self_attn = BidirectionalMultiheadSelfAttention( self.embed_dim, (args.decoder_attention_heads * 2) if args.double_final_heads else args.decoder_attention_heads, dropout=args.attention_dropout, concat_final_q=args.concat_final_q, ) self.dropout = args.dropout self.relu_dropout = args.relu_dropout self.normalize_before = args.decoder_normalize_before self.fwd_layer_norm = LayerNorm(self.embed_dim) self.bwd_layer_norm = LayerNorm(self.embed_dim) self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim) self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim)
def __init__(self, args): super().__init__() self.embed_dim = args.encoder_embed_dim self.self_attn = MultiheadAttention( self.embed_dim, args.encoder_attention_heads, dropout=args.attention_dropout, ) self.dropout = args.dropout self.relu_dropout = args.relu_dropout self.normalize_before = args.encoder_normalize_before self.fc1 = Linear(self.embed_dim, args.encoder_ffn_embed_dim) self.fc2 = Linear(args.encoder_ffn_embed_dim, self.embed_dim) self.layer_norms = nn.ModuleList( [LayerNorm(self.embed_dim) for i in range(2)])
def __init__(self, args, dictionary, embed_tokens, no_encoder_attn=False, left_pad=False, final_norm=True): super().__init__(dictionary) self.dropout = args.dropout self.share_input_output_embed = args.share_decoder_input_output_embed input_embed_dim = embed_tokens.embedding_dim embed_dim = args.decoder_embed_dim output_embed_dim = args.decoder_output_dim padding_idx = embed_tokens.padding_idx self.max_target_positions = args.max_target_positions self.embed_tokens = embed_tokens self.embed_scale = math.sqrt( embed_dim) # todo: try with input_embed_dim self.project_in_dim = Linear( input_embed_dim, embed_dim, bias=False) if embed_dim != input_embed_dim else None self.embed_positions = PositionalEmbedding( args.max_target_positions, embed_dim, padding_idx, left_pad=left_pad, learned=args.decoder_learned_pos, ) if not args.no_token_positional_embeddings else None self.layers = nn.ModuleList([]) self.layers.extend([ MaskDecoderLayer(args, no_encoder_attn) for _ in range(args.decoder_layers) ]) self.adaptive_softmax = None self.project_out_dim = Linear(embed_dim, output_embed_dim, bias=False) \ if embed_dim != output_embed_dim and not args.tie_adaptive_weights else None if args.adaptive_softmax_cutoff is not None: self.adaptive_softmax = AdaptiveSoftmax( len(dictionary), output_embed_dim, options.eval_str_list(args.adaptive_softmax_cutoff, type=int), dropout=args.adaptive_softmax_dropout, adaptive_inputs=embed_tokens if args.tie_adaptive_weights else None, factor=args.adaptive_softmax_factor, tie_proj=args.tie_adaptive_proj, ) elif not self.share_input_output_embed: self.embed_out = nn.Parameter( torch.Tensor(len(dictionary), output_embed_dim)) nn.init.normal_(self.embed_out, mean=0, std=output_embed_dim**-0.5) self.register_buffer('version', torch.Tensor([2])) self.normalize = args.decoder_normalize_before and final_norm if self.normalize: self.layer_norm = LayerNorm(embed_dim)