def create_lang_dictionary(cls, langs): unk = "<unk>" # hack to remove symbols other than unk as they are not needed by lang dict lang_dict = Dictionary(pad=unk, eos=unk, unk=unk, bos=unk) for lang in langs: lang_dict.add_symbol(lang) return lang_dict
def setup_task(cls, args, **kwargs): """Setup the task. """ dictionary = Dictionary() for i in range(args.dict_size): dictionary.add_symbol("word{}".format(i)) logger.info("dictionary: {} types".format(len(dictionary))) return cls(args, dictionary)
def setup_task(cls, args, **kwargs): """Setup the task. """ dictionary = Dictionary() for i in range(args.dict_size): dictionary.add_symbol("word{}".format(i)) logger.info("dictionary: {} types".format(len(dictionary))) args.max_source_positions = args.src_len + dictionary.pad() + 2 args.max_target_positions = args.tgt_len + dictionary.pad() + 2 return cls(args, dictionary)
class DummyLMTask(FairseqTask): def __init__(self, cfg: DummyLMConfig): super().__init__(cfg) # load dictionary self.dictionary = Dictionary() for i in range(cfg.dict_size): self.dictionary.add_symbol("word{}".format(i)) self.dictionary.pad_to_multiple_(8) # often faster if divisible by 8 logger.info("dictionary: {} types".format(len(self.dictionary))) seq = torch.arange(cfg.tokens_per_sample + 1) + self.dictionary.pad() + 1 self.dummy_src = seq[:-1] self.dummy_tgt = seq[1:] def load_dataset(self, split, epoch=1, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ if self.cfg.batch_size is not None: bsz = self.cfg.batch_size else: bsz = max(1, self.cfg.max_tokens // self.cfg.tokens_per_sample) self.datasets[split] = DummyDataset( { "id": 1, "net_input": { "src_tokens": torch.stack([self.dummy_src for _ in range(bsz)]), "src_lengths": torch.full( (bsz, ), self.cfg.tokens_per_sample, dtype=torch.long), }, "target": torch.stack([self.dummy_tgt for _ in range(bsz)]), "nsentences": bsz, "ntokens": bsz * self.cfg.tokens_per_sample, }, num_items=self.cfg.dataset_size, item_size=self.cfg.tokens_per_sample, ) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary
def augment_dictionary( dictionary: Dictionary, language_list: List[str], lang_tok_style: str, langtoks_specs: Sequence[str] = (LangTokSpec.main.value, ), extra_data: Optional[Dict[str, str]] = None, ) -> None: for spec in langtoks_specs: for language in language_list: dictionary.add_symbol( get_lang_tok(lang=language, lang_tok_style=lang_tok_style, spec=spec)) if lang_tok_style == LangTokStyle.mbart.value or ( extra_data is not None and LangTokSpec.mono_dae.value in extra_data): dictionary.add_symbol("<mask>")