def get_validation_parser(default_task=None): parser = get_parser("Validation", default_task) add_dataset_args(parser, train=True) add_distributed_training_args(parser, default_world_size=1) group = parser.add_argument_group("Evaluation") gen_parser_from_dataclass(group, CommonEvalConfig()) return parser
def get_parser(desc, default_task="translation"): # Before creating the true parser, we need to import optional user module # in order to eagerly import custom tasks, optimizers, architectures, etc. usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False) usr_parser.add_argument("--user-dir", default=None) usr_args, _ = usr_parser.parse_known_args() utils.import_user_module(usr_args) parser = argparse.ArgumentParser(allow_abbrev=False) gen_parser_from_dataclass(parser, CommonConfig()) from fairseq_stchde.registry import REGISTRIES for registry_name, REGISTRY in REGISTRIES.items(): parser.add_argument( "--" + registry_name.replace("_", "-"), default=REGISTRY["default"], choices=REGISTRY["registry"].keys(), ) # Task definitions can be found under fairseq/tasks/ from fairseq_stchde.tasks import TASK_REGISTRY parser.add_argument( "--task", metavar="TASK", default=default_task, choices=TASK_REGISTRY.keys(), help="task", ) # fmt: on return parser
def add_distributed_training_args(parser, default_world_size=None): group = parser.add_argument_group("distributed_training") if default_world_size is None: default_world_size = max(1, torch.cuda.device_count()) gen_parser_from_dataclass( group, DistributedTrainingConfig(distributed_world_size=default_world_size)) return group
def add_args(cls, parser): """Add optimizer-specific arguments to the parser.""" dc = getattr(cls, "__dataclass", None) if dc is not None: gen_parser_from_dataclass(parser, dc())
def add_args(cls, parser): """Add model-specific arguments to the parser.""" dc = getattr(cls, "__dataclass", None) if dc is not None: # do not set defaults so that settings defaults from various architectures still works gen_parser_from_dataclass(parser, dc(), delete_default=True)
def add_args(cls, parser): """Add arguments to the parser for this LR scheduler.""" dc = getattr(cls, "__dataclass", None) if dc is not None: gen_parser_from_dataclass(parser, dc())
def add_args(parser): """Add optimizer-specific arguments to the parser.""" gen_parser_from_dataclass(parser, FairseqBMUFConfig())
def parse_args_and_arch( parser: argparse.ArgumentParser, input_args: List[str] = None, parse_known: bool = False, suppress_defaults: bool = False, modify_parser: Optional[Callable[[argparse.ArgumentParser], None]] = None, ): """ Args: parser (ArgumentParser): the parser input_args (List[str]): strings to parse, defaults to sys.argv parse_known (bool): only parse known arguments, similar to `ArgumentParser.parse_known_args` suppress_defaults (bool): parse while ignoring all default values modify_parser (Optional[Callable[[ArgumentParser], None]]): function to modify the parser, e.g., to set default values """ if suppress_defaults: # Parse args without any default values. This requires us to parse # twice, once to identify all the necessary task/model args, and a second # time with all defaults set to None. args = parse_args_and_arch( parser, input_args=input_args, parse_known=parse_known, suppress_defaults=False, ) suppressed_parser = argparse.ArgumentParser(add_help=False, parents=[parser]) suppressed_parser.set_defaults( **{k: None for k, v in vars(args).items()}) args = suppressed_parser.parse_args(input_args) return argparse.Namespace( **{k: v for k, v in vars(args).items() if v is not None}) from fairseq_stchde.models import ARCH_MODEL_REGISTRY, ARCH_CONFIG_REGISTRY, MODEL_REGISTRY # Before creating the true parser, we need to import optional user module # in order to eagerly import custom tasks, optimizers, architectures, etc. usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False) usr_parser.add_argument("--user-dir", default=None) usr_args, _ = usr_parser.parse_known_args(input_args) utils.import_user_module(usr_args) if modify_parser is not None: modify_parser(parser) # The parser doesn't know about model/criterion/optimizer-specific args, so # we parse twice. First we parse the model/criterion/optimizer, then we # parse a second time after adding the *-specific arguments. # If input_args is given, we will parse those args instead of sys.argv. args, _ = parser.parse_known_args(input_args) # Add model-specific args to parser. if hasattr(args, "arch"): model_specific_group = parser.add_argument_group( "Model-specific configuration", # Only include attributes which are explicitly given as command-line # arguments or which have default values. argument_default=argparse.SUPPRESS, ) if args.arch in ARCH_MODEL_REGISTRY: ARCH_MODEL_REGISTRY[args.arch].add_args(model_specific_group) elif args.arch in MODEL_REGISTRY: MODEL_REGISTRY[args.arch].add_args(model_specific_group) else: raise RuntimeError() if hasattr(args, "task"): from fairseq_stchde.tasks import TASK_REGISTRY TASK_REGISTRY[args.task].add_args(parser) if getattr(args, "use_bmuf", False): # hack to support extra args for block distributed data parallelism from fairseq_stchde.optim.bmuf import FairseqBMUF FairseqBMUF.add_args(parser) # Add *-specific args to parser. from fairseq_stchde.registry import REGISTRIES for registry_name, REGISTRY in REGISTRIES.items(): choice = getattr(args, registry_name, None) if choice is not None: cls = REGISTRY["registry"][choice] if hasattr(cls, "add_args"): cls.add_args(parser) elif hasattr(cls, "__dataclass"): gen_parser_from_dataclass(parser, cls.__dataclass()) # Modify the parser a second time, since defaults may have been reset if modify_parser is not None: modify_parser(parser) # Parse a second time. if parse_known: args, extra = parser.parse_known_args(input_args) else: args = parser.parse_args(input_args) extra = None # Post-process args. if (hasattr(args, "batch_size_valid") and args.batch_size_valid is None) or not hasattr( args, "batch_size_valid"): args.batch_size_valid = args.batch_size if hasattr(args, "max_tokens_valid") and args.max_tokens_valid is None: args.max_tokens_valid = args.max_tokens if getattr(args, "memory_efficient_fp16", False): args.fp16 = True if getattr(args, "memory_efficient_bf16", False): args.bf16 = True args.tpu = getattr(args, "tpu", False) args.bf16 = getattr(args, "bf16", False) if args.bf16: args.tpu = True if args.tpu and args.fp16: raise ValueError("Cannot combine --fp16 and --tpu, use --bf16 on TPUs") if getattr(args, "seed", None) is None: args.seed = 1 # default seed for training args.no_seed_provided = True else: args.no_seed_provided = False # Apply architecture configuration. if hasattr(args, "arch") and args.arch in ARCH_CONFIG_REGISTRY: ARCH_CONFIG_REGISTRY[args.arch](args) if parse_known: return args, extra else: return args
def add_interactive_args(parser): group = parser.add_argument_group("Interactive") gen_parser_from_dataclass(group, InteractiveConfig())
def add_generation_args(parser): group = parser.add_argument_group("Generation") add_common_eval_args(group) gen_parser_from_dataclass(group, GenerationConfig()) return group
def add_eval_lm_args(parser): group = parser.add_argument_group("LM Evaluation") add_common_eval_args(group) gen_parser_from_dataclass(group, EvalLMConfig())
def add_common_eval_args(group): gen_parser_from_dataclass(group, CommonEvalConfig())
def add_checkpoint_args(parser): group = parser.add_argument_group("checkpoint") # fmt: off gen_parser_from_dataclass(group, CheckpointConfig()) # fmt: on return group
def add_optimization_args(parser): group = parser.add_argument_group("optimization") # fmt: off gen_parser_from_dataclass(group, OptimizationConfig()) # fmt: on return group
def add_dataset_args(parser, train=False, gen=False): group = parser.add_argument_group("dataset_data_loading") gen_parser_from_dataclass(group, DatasetConfig()) # fmt: on return group