示例#1
0
    def test_mul(self, mat, upper, preserve_diag, order, device):
        inpt1 = fix_mat(mat,
                        dtype=mat.dtype,
                        order=order,
                        copy=True,
                        numpy=True)

        k = 1 if preserve_diag else 0
        if upper:
            tri_fn = partial(np.triu, k=k)
            other_tri_fn = partial(np.tril, k=k - 1)
        else:
            tri_fn = partial(np.tril, k=-k)
            other_tri_fn = partial(np.triu, k=-k + 1)

        inpt1 = torch.from_numpy(inpt1)
        inpt1_dev = create_same_stride(inpt1.shape, inpt1, inpt1.dtype, device)
        inpt1_dev.copy_(inpt1)
        mul_triang(inpt1_dev,
                   upper=upper,
                   preserve_diag=preserve_diag,
                   multiplier=10**6)
        inpt1 = inpt1_dev.cpu().numpy()

        assert np.mean(tri_fn(inpt1)) > 10**5
        assert np.mean(other_tri_fn(inpt1)) < 1
示例#2
0
    def test_zero(self, mat, upper, preserve_diag, order, device):
        inpt1 = fix_mat(mat,
                        dtype=mat.dtype,
                        order=order,
                        copy=True,
                        numpy=True)
        inpt2 = inpt1.copy(order="K")

        k = 1 if preserve_diag else 0
        if upper:
            tri_fn = partial(np.triu, k=k)
        else:
            tri_fn = partial(np.tril, k=-k)

        inpt1 = torch.from_numpy(inpt1)
        inpt1_dev = create_same_stride(inpt1.shape, inpt1, inpt1.dtype, device)
        inpt1_dev.copy_(inpt1)
        mul_triang(inpt1_dev,
                   upper=upper,
                   preserve_diag=preserve_diag,
                   multiplier=0)
        inpt1 = inpt1_dev.cpu().numpy()

        assert np.sum(tri_fn(inpt1)) == 0

        if preserve_diag:
            inpt2_dev = inpt1_dev
            inpt2_dev.copy_(torch.from_numpy(inpt2))
            zero_triang(inpt2_dev, upper=upper)
            inpt2 = inpt2_dev.cpu().numpy()
            np.testing.assert_allclose(inpt1, inpt2)
示例#3
0
    def init(self, X: Union[torch.Tensor, SparseTensor], Y: torch.Tensor,
             alpha: torch.Tensor, penalty: float, N: int) -> None:
        """Initialize the preconditioner matrix.

        This method must be called before the preconditioner becomes usable.

        Parameters
        ----------
        X : torch.Tensor
            (M x D) matrix of Nystroem centers
        Y : torch.Tensor
            (M x 1) vector of targets corresponding to the Nystroem centers `X`
        alpha : torch.Tensor
            (M x 1) parameter vector (of the same dimension as `Y`) which gives the current
            solution to the optimization problem.
        penalty : float
            Regularization amount
        N : int
            Number of points in the full data-set.

        Notes
        -----
        If `debug=True` is present in the options, this method will print a lot of extra
        information pertaining timings of the various preconditioner operations. This can be
        useful to help understand how the preconditioner works.
        """
        if Y.shape[1] != 1:
            raise ValueError(
                "Logistic preconditioner can only deal with 1D outputs.")

        dtype = X.dtype
        M = X.size(0)

        eps = self.params.pc_epsilon(dtype)

        if self.fC is None:
            # This is done only at the first iteration of the logistic-falkon algorithm
            # It sets the `T` variable from the paper (chol(kMM)) to the upper part of `self.fC`
            with TicToc("Kernel", debug=self.params.debug):
                if isinstance(X, torch.Tensor):
                    C = create_same_stride((M, M),
                                           X,
                                           dtype=dtype,
                                           device='cpu',
                                           pin_memory=self._use_cuda)
                else:  # If sparse tensor we need fortran for kernel calculation
                    C = create_fortran((M, M),
                                       dtype=dtype,
                                       device='cpu',
                                       pin_memory=self._use_cuda)
                self.kernel(X, X, out=C, opt=self.params)
            if not is_f_contig(C):
                C = C.T

            with TicToc("Add diag", debug=self.params.debug):
                # Compute T: lower(fC) = T.T
                inplace_add_diag_th(C, eps * M)
            with TicToc("Cholesky 1", debug=self.params.debug):
                C = potrf_wrapper(C,
                                  clean=True,
                                  upper=False,
                                  use_cuda=self._use_cuda,
                                  opt=self.params)
                # Save the diagonal which will be overwritten when computing A
                self.dT = C.diag()
            with TicToc("Copy triangular", debug=self.params.debug):
                # Copy lower(fC) to upper(fC):  upper(fC) = T.
                copy_triang(C, upper=False)
        else:
            C = self.fC
            if not self._use_cuda:
                # Copy non-necessary for cuda since LAUUM will do the copying
                with TicToc("Copy triangular", debug=self.params.debug):
                    # Copy upper(fC) to lower(fC): lower(fC) = T.T
                    copy_triang(C, upper=True)  # does not copy the diagonal
            # Setting diagonal necessary for trmm
            C.diagonal().copy_(self.dT)

        # Compute W
        with TicToc("TRMM", debug=self.params.debug):
            # T is on upper(fC). Compute T.T @ alpha
            alpha = self._trmm(C, alpha.clone())
        with TicToc("W (ddf)", debug=self.params.debug):
            W = self.loss.ddf(Y, alpha)
        with TicToc("W-Multiply", debug=self.params.debug):
            W.sqrt_()
            vec_mul_triang(C, W.numpy().reshape(-1), side=0, upper=False)

        # LAUUM side depends on CUDA or CPU version because the matrix is initially symmetric and
        # the CUDA version will write the result on the opposite side (i.e. `write_opposite=True`)
        # while the CPU version will write on the same side.
        if self._use_cuda:
            with TicToc("LAUUM", debug=self.params.debug):
                # Product upper(fC) @ upper(fC).T : lower(fC) = T @ T.T
                C = lauum_wrapper(C,
                                  upper=True,
                                  use_cuda=self._use_cuda,
                                  opt=self.params)
        else:
            with TicToc("LAUUM", debug=self.params.debug):
                # Product lower(fC).T @ lower(fC) : lower(fC) = T @ T.T
                C = lauum_wrapper(C,
                                  upper=False,
                                  use_cuda=self._use_cuda,
                                  opt=self.params)

        # NOTE: Here the multiplier is 1/N instead of the more common 1/M!
        mul_triang(C, upper=False, preserve_diag=False, multiplier=1 / N)

        with TicToc("Add diag", debug=self.params.debug):
            # lower(fC) = 1/N * [email protected] + lambda * I
            inplace_add_diag_th(C, penalty)

        with TicToc("Cholesky 2", debug=self.params.debug):
            # Cholesky on lower(fC) : lower(fC) = A.T
            C = potrf_wrapper(C,
                              clean=False,
                              upper=False,
                              use_cuda=self._use_cuda,
                              opt=self.params)
            self.dA = C.diag()

        self.fC = C
示例#4
0
    def init(self, X: Union[torch.Tensor, SparseTensor]):
        """Initialize the preconditioner matrix.

        This method must be called before the preconditioner can be used.

        Parameters
        ----------
        X : torch.Tensor
            The (M x D) matrix of Nystroem centers
        """
        dtype = X.dtype
        dev = X.device
        if X.is_cuda and not self._use_cuda:
            raise RuntimeError("use_cuda is set to False, but data is CUDA tensor. "
                               "Check your options.")
        eps = self.params.pc_epsilon(X.dtype)

        M = X.size(0)

        with TicToc("Kernel", debug=self.params.debug):
            if isinstance(X, torch.Tensor):
                C = create_same_stride((M, M), X, dtype=dtype, device=dev,
                                       pin_memory=self._use_cuda)
            else:  # If sparse tensor we need fortran for kernel calculation
                C = create_fortran((M, M), dtype=dtype, device=dev, pin_memory=self._use_cuda)
            self.kernel(X, X, out=C, opt=self.params)
        if not is_f_contig(C):
            C = C.T

        with TicToc("Cholesky 1", debug=self.params.debug):
            # Compute T: lower(fC) = T.T
            inplace_add_diag_th(C, eps * M)
            C = potrf_wrapper(C, clean=False, upper=False,
                              use_cuda=self._use_cuda, opt=self.params)
            # Save the diagonal which will be overwritten when computing A
            self.dT = C.diag()

        with TicToc("Copy triangular", debug=self.params.debug):
            # Copy lower(fC) to upper(fC):  upper(fC) = T.
            copy_triang(C, upper=False)

        if self._use_cuda:
            with TicToc("LAUUM", debug=self.params.debug):
                # Product upper(fC) @ upper(fC).T : lower(fC) = T @ T.T
                C = lauum_wrapper(C, upper=True, use_cuda=self._use_cuda, opt=self.params)
        else:
            with TicToc("LAUUM", debug=self.params.debug):
                # Product lower(fC).T @ lower(fC) : lower(fC) = T @ T.T
                C = lauum_wrapper(C, upper=False, use_cuda=self._use_cuda, opt=self.params)

        with TicToc("Cholesky 2", debug=self.params.debug):
            # lower(fC) = 1/M * [email protected]
            mul_triang(C, upper=False, preserve_diag=False, multiplier=1 / M)
            # lower(fC) = 1/M * [email protected] + lambda * I
            inplace_add_diag_th(C, self._lambda)
            # Cholesky on lower(fC) : lower(fC) = A.T
            C = potrf_wrapper(C, clean=False, upper=False,
                              use_cuda=self._use_cuda, opt=self.params)
            self.dA = C.diag()

        self.fC = C
    def init(self,
             X: Union[torch.Tensor, SparseTensor],
             weight_vec: Optional[torch.Tensor] = None):
        """Initialize the preconditioner matrix.

        This method must be called before the preconditioner can be used.

        Parameters
        ----------
        X : torch.Tensor
            The (M x D) matrix of Nystroem centers
        weight_vec
            An optional vector of size (M x 1) which is used for reweighted least-squares.
            This vector should contain the weights corresponding to the Nystrom centers.
        """
        if X.is_cuda and not self._use_cuda:
            raise RuntimeError(
                "use_cuda is set to False, but data is CUDA tensor. "
                "Check your options.")
        if weight_vec is not None and not check_same_device(X, weight_vec):
            raise ValueError(f"Weights and data are not on the same device "
                             f"({weight_vec.device}, {X.device})")
        if weight_vec is not None and weight_vec.shape[0] != X.shape[0]:
            raise ValueError(
                f"Weights and Nystrom centers should have the same first dimension. "
                f"Found instead {weight_vec.shape[0]}, {X.shape[0]}.")
        dtype = X.dtype
        dev = X.device
        eps = self.params.pc_epsilon(X.dtype)
        M = X.size(0)

        with TicToc("Kernel", debug=self.params.debug):
            if isinstance(X, torch.Tensor):
                C = create_same_stride((M, M),
                                       X,
                                       dtype=dtype,
                                       device=dev,
                                       pin_memory=self._use_cuda)
            else:  # If sparse tensor we need fortran for kernel calculation
                C = create_fortran((M, M),
                                   dtype=dtype,
                                   device=dev,
                                   pin_memory=self._use_cuda)
            self.kernel(X, X, out=C, opt=self.params)
        if not is_f_contig(C):
            C = C.T

        with TicToc("Cholesky 1", debug=self.params.debug):
            # Compute T: lower(fC) = T.T
            inplace_add_diag_th(C, eps * M)
            C = potrf_wrapper(C,
                              clean=False,
                              upper=False,
                              use_cuda=self._use_cuda,
                              opt=self.params)
            # Save the diagonal which will be overwritten when computing A
            self.dT = C.diag()

        with TicToc("Copy triangular", debug=self.params.debug):
            # Copy lower(fC) to upper(fC):  upper(fC) = T.
            copy_triang(C, upper=False)

        # Weighted least-squares needs to weight the A matrix. We can weigh once before LAUUM,
        # but since CUDA-LAUUM touches both sides of C, weighting before LAUUM will also modify
        # the matrix T. Therefore for CUDA inputs we weigh twice after LAUUM!
        if weight_vec is not None and not self._use_cuda:
            with TicToc("Weighting(CPU)", debug=self.params.debug):
                weight_vec.sqrt_()
                vec_mul_triang(C, weight_vec, side=1, upper=False)

        if self._use_cuda:
            with TicToc("LAUUM(CUDA)", debug=self.params.debug):
                # Product upper(fC) @ upper(fC).T, store in lower(fC) = T @ T.T
                C = lauum_wrapper(C,
                                  upper=True,
                                  use_cuda=self._use_cuda,
                                  opt=self.params)
        else:
            with TicToc("LAUUM(CPU)", debug=self.params.debug):
                # Product lower(fC).T @ lower(fC), store in lower(fC) = T @ T.T
                C = lauum_wrapper(C,
                                  upper=False,
                                  use_cuda=self._use_cuda,
                                  opt=self.params)

        if weight_vec is not None and self._use_cuda:
            with TicToc("Weighting(CUDA)", debug=self.params.debug):
                weight_vec.sqrt_()
                vec_mul_triang(C, weight_vec, side=0, upper=False)
                vec_mul_triang(C, weight_vec, side=1, upper=False)

        with TicToc("Cholesky 2", debug=self.params.debug):
            # lower(fC) = 1/M * [email protected]
            mul_triang(C, upper=False, preserve_diag=False, multiplier=1 / M)
            # lower(fC) = 1/M * [email protected] + lambda * I
            inplace_add_diag_th(C, self._lambda)
            # Cholesky on lower(fC) : lower(fC) = A.T
            C = potrf_wrapper(C,
                              clean=False,
                              upper=False,
                              use_cuda=self._use_cuda,
                              opt=self.params)
            self.dA = C.diag()

        self.fC = C