示例#1
0
def line(parameters):
    parser = parsers.line_parser()
    args = parser.parse_args(parameters)

    regions = [fanc.load(file_name) for file_name in args.regions]
    attribute = args.attribute
    bin_size = args.bin_size
    labels = args.labels
    colors = args.colors
    fill = args.fill
    line_style = args.line_style
    ylim = args.ylim
    alpha = args.alpha
    legend_location = args.legend_location

    if labels is not None and len(labels) != len(regions):
        parser.error("Number of labels ({}) must be the same as number "
                     "of datasets ({})".format(len(labels), len(regions)))

    p = kplt.LinePlot(regions,
                      bin_size=bin_size,
                      fill=fill,
                      attribute=attribute,
                      labels=labels,
                      style=line_style,
                      ylim=ylim,
                      colors=colors,
                      legend_location=legend_location,
                      plot_kwargs={'alpha': alpha})
    return p, args
示例#2
0
 def test_lineplot_dict_input(self, data_source, bin_size):
     data = {k: getattr(self, d) for k, d in data_source.items()}
     lplot = kplot.LinePlot(data, bin_size=bin_size)
     gfig = kplot.GenomicFigure([lplot])
     fig, axes = gfig.plot("chr11:77497000-77500000")
     assert all(len(l.get_ydata()) > 5 for a in axes for l in a.get_lines())
     assert all(l.get_label() == n_p
                for l, n_p in zip(axes[0].get_lines(), data.keys()))
示例#3
0
 def test_lineplot(self, data_source, bin_size):
     data = [getattr(self, d) for d in data_source]
     if len(data) == 1:
         data = data[0]
     lplot = kplot.LinePlot(data, bin_size=bin_size)
     gfig = kplot.GenomicFigure([lplot])
     fig, axes = gfig.plot("chr11:77497000-77500000")
     assert all(len(l.get_ydata()) > 5 for l in axes[0].get_lines())
示例#4
0
# polii_chip_early = os.path.join("external_data", "blythe_2015", "aligned",
#                           "PolII-pSer5_NC14-early_sorted_filtered_merged_canonical_chrs.bw")
# polii_chip_mid = os.path.join("external_data", "blythe_2015", "aligned",
#                           "PolII-pSer5_NC14-middle_sorted_filtered_merged_canonical_chrs.bw")
polii_chip_late = os.path.join("external_data", "blythe_2015", "aligned",
                               "PolII-pSer5_NC14-late_sorted_filtered_merged_canonical_chrs.bw")

# polii_early_plot = fancplot.LinePlot(polii_chip_early, fill=True, plot_kwargs={'color': "black"},
#                                  draw_minor_ticks=False, aspect=0.05,
#                                  ylim=polii_ylim, n_yticks=2)
# polii_mid_plot = fancplot.LinePlot(polii_chip_mid, fill=True, plot_kwargs={'color': "black"},
#                                  draw_minor_ticks=False, aspect=0.05,
#                                  ylim=polii_ylim, n_yticks=2)
polii_late_plot = fancplot.LinePlot(polii_chip_late, fill=False,
                                    plot_kwargs={'color': "black"},
                                    draw_minor_ticks=False, aspect=0.05,
                                    ylim=polii_ylim, n_yticks=2)

rnaseq_plot_gd7 = fancplot.LinePlot(rnaseq_dict['gd7'], fill=False,
                                    plot_kwargs={'color': "#648fff"},
                                    draw_minor_ticks=False, aspect=0.05,
                                    ylim=rnaseq_ylim, n_yticks=2)

h3k27ac_plot_gd7 = fancplot.LinePlot(h3k27ac_dict['gd7'], fill=False,
                                     plot_kwargs={'color': "#648fff"},
                                     draw_minor_ticks=False, aspect=0.05,
                                     ylim=h3k27ac_ylim, n_yticks=2)
h3k27me3_plot_gd7 = fancplot.LinePlot(h3k27me3_dict['gd7'], fill=False,
                                      plot_kwargs={'color': "#648fff"},
                                      draw_minor_ticks=False, aspect=0.05,
                                      ylim=h3k27me3_ylim, n_yticks=2)
示例#5
0
plt.show()
# end snippet ab fancplot-correlation
fig.savefig('../docsrc/api/analyse/images/ab_1mb_correlation.png')


# start snippet ab ev
ev = ab.eigenvector()
# end snippet ab ev

# start snippet ab gc-ev
gc_ev = ab.eigenvector(genome='hg19_chr18_19.fa', force=True)
# end snippet ab gc-ev


# start snippet ab plot-ev
fig, ax = plt.subplots(figsize=(5, 2))
lp = fancplot.LinePlot(ab, colors=['darkturquoise'])
lp.plot('chr18')
plt.show()
# end snippet ab plot-ev
fig.savefig('../docsrc/api/analyse/images/ab_1mb_ev.png')

# start snippet ab profile
profile, cutoffs = ab.enrichment_profile(hic_1mb, genome='hg19_chr18_19.fa')
# end snippet ab profile

# start snippet ab saddle
fig, axes = fancplot.saddle_plot(profile, cutoffs)
# end snippet ab saddle
fig.savefig('../docsrc/api/analyse/images/ab_1mb_saddle.png')
示例#6
0
def plot_regions(regions):

    h = fanc.load(os.path.join("data", "hic", "merged", "3-4h", "hic",
                               "3-4h_2kb.hic"),
                  mode="r")
    h_plot = fancplot.HicPlot(h,
                              vmin=1e-03,
                              vmax=1e-01,
                              norm="log",
                              draw_minor_ticks=False)

    genes = "external_data/flybase/dmel-all-r6.30.gtf.gz"
    genes_plot = fancplot.GenePlot(genes,
                                   squash=True,
                                   group_by="gene_symbol",
                                   aspect=0.15,
                                   label_field="gene_symbol",
                                   show_labels=False,
                                   draw_minor_ticks=False)

    rnaseq_dict = {
        name:
        os.path.join("external_data", "koenecke_2016_2017", "rnaseq_aligned",
                     name + "_sorted_filtered_merged_canonical_chrs_rnaseq.bw")
        for name in ["gd7", "tlrm910", "tl10b"]
    }
    h3k27ac_dict = {
        name: os.path.join(
            "external_data", "koenecke_2016_2017", "chipseq_aligned",
            "H3K27ac_" + name + "_sorted_filtered_merged_canonical_chrs.bw")
        for name in ["gd7", "tl10b"]
    }
    h3k27ac_dict["Tollrm910"] = os.path.join(
        "external_data", "extra_chip-seq", "chipseq_aligned",
        "H3K27ac_Tollrm910_sorted_filtered_merged_canonical_chrs.bw")

    rnaseq_ylim = fancplot.helpers.LimitGroup()
    h3k27ac_ylim = fancplot.helpers.LimitGroup()
    polii_ylim = fancplot.helpers.LimitGroup()

    # polii_chip_early = os.path.join("external_data", "blythe_2015", "aligned",
    #                           "PolII-pSer5_NC14-early_sorted_filtered_merged_canonical_chrs.bw")
    # polii_chip_mid = os.path.join("external_data", "blythe_2015", "aligned",
    #                           "PolII-pSer5_NC14-middle_sorted_filtered_merged_canonical_chrs.bw")
    polii_chip_late = os.path.join(
        "external_data", "blythe_2015", "aligned",
        "PolII-pSer5_NC14-late_sorted_filtered_merged_canonical_chrs.bw")

    # polii_early_plot = fancplot.LinePlot(polii_chip_early, fill=True, plot_kwargs={'color': "black"},
    #                                  draw_minor_ticks=False, aspect=0.05,
    #                                  ylim=polii_ylim, n_yticks=2)
    # polii_mid_plot = fancplot.LinePlot(polii_chip_mid, fill=True, plot_kwargs={'color': "black"},
    #                                  draw_minor_ticks=False, aspect=0.05,
    #                                  ylim=polii_ylim, n_yticks=2)
    polii_late_plot = fancplot.LinePlot(polii_chip_late,
                                        fill=True,
                                        plot_kwargs={'color': "black"},
                                        draw_minor_ticks=False,
                                        aspect=0.05,
                                        ylim=polii_ylim,
                                        n_yticks=2)

    rnaseq_plot_gd7 = fancplot.LinePlot(rnaseq_dict['gd7'],
                                        fill=True,
                                        plot_kwargs={'color': "#648fff"},
                                        draw_minor_ticks=False,
                                        aspect=0.05,
                                        n_yticks=2)

    h3k27ac_plot_gd7 = fancplot.LinePlot(h3k27ac_dict['gd7'],
                                         fill=True,
                                         plot_kwargs={'color': "#648fff"},
                                         draw_minor_ticks=False,
                                         aspect=0.05,
                                         ylim=h3k27ac_ylim,
                                         n_yticks=2)

    rnaseq_plot_Tollrm910 = fancplot.LinePlot(rnaseq_dict['tlrm910'],
                                              fill=True,
                                              plot_kwargs={'color': "#dc267f"},
                                              draw_minor_ticks=False,
                                              aspect=0.05,
                                              n_yticks=2)

    h3k27ac_plot_Tollrm910 = fancplot.LinePlot(
        h3k27ac_dict['Tollrm910'],
        fill=True,
        plot_kwargs={'color': "#dc267f"},
        draw_minor_ticks=False,
        aspect=0.05,
        ylim=h3k27ac_ylim,
        n_yticks=2)

    rnaseq_plot_toll10b = fancplot.LinePlot(rnaseq_dict['tl10b'],
                                            fill=True,
                                            plot_kwargs={'color': "#ffb000"},
                                            draw_minor_ticks=False,
                                            aspect=0.05,
                                            n_yticks=2)

    h3k27ac_plot_toll10b = fancplot.LinePlot(h3k27ac_dict['tl10b'],
                                             fill=True,
                                             plot_kwargs={'color': "#ffb000"},
                                             draw_minor_ticks=False,
                                             aspect=0.05,
                                             ylim=h3k27ac_ylim,
                                             n_yticks=2)

    gd7_enh = "data/supplementary_tables/gd7_candidate_enhancers.bed"
    gd7_enh_plot = fancplot.GenomicFeaturePlot(gd7_enh,
                                               aspect=0.02,
                                               color="#648fff",
                                               draw_minor_ticks=False)

    Tollrm910_enh = "data/supplementary_tables/Tollrm910_candidate_enhancers.bed"
    Tollrm910_enh_plot = fancplot.GenomicFeaturePlot(Tollrm910_enh,
                                                     aspect=0.02,
                                                     color="#dc267f",
                                                     draw_minor_ticks=False)

    toll10b_enh = "data/supplementary_tables/Toll10B_candidate_enhancers.bed"
    toll10b_enh_plot = fancplot.GenomicFeaturePlot(toll10b_enh,
                                                   aspect=0.02,
                                                   color="#ffb000",
                                                   draw_minor_ticks=False)

    plots = [
        h_plot,
        # ins_plot,
        # boundaries_plot,
        genes_plot,
        # hk_plot,
        # polii_early_plot, polii_mid_plot,
        polii_late_plot,
        rnaseq_plot_gd7,
        rnaseq_plot_Tollrm910,
        rnaseq_plot_toll10b,
        h3k27ac_plot_gd7,
        h3k27ac_plot_Tollrm910,
        h3k27ac_plot_toll10b,
        gd7_enh_plot,
        Tollrm910_enh_plot,
        toll10b_enh_plot
    ]

    with PdfPages(output_file) as pdf:
        with fancplot.GenomicFigure(plots, ticks_last=True) as gfig:
            for name, region, rnaseq_ylim in regions:
                logging.info(region)
                fig, axes = gfig.plot(region)
                axes[3].set_ylim([0, rnaseq_ylim])
                axes[4].set_ylim([0, rnaseq_ylim])
                axes[5].set_ylim([0, rnaseq_ylim])
                pdf.savefig()
    def compare(self, weight1, weight2):
        if weight1 < weight2:
            return -1
        if weight1 > weight2:
            return 1
        return 0
# end snippet comparisons custom


# start snippet regions compare
diff_ins_esc_cn_100kb = fanc.DifferenceRegions.from_regions(ins_esc_100kb, ins_cn_100kb)
# end snippet regions compare

# start snippet regions plot
p_orig = fancplot.LinePlot([ins_esc_100kb, ins_cn_100kb], ylim=(-1, 1),
                           colors=['darkturquoise', 'orange'],
                           style='mid', fill=False)
p_diff = fancplot.LinePlot(diff_ins_esc_cn_100kb, ylim=(-1., 1.),
                           colors=['aquamarine'],
                           style='mid')
gf = fancplot.GenomicFigure([p_orig, p_diff], ticks_last=True)
fig, axes = gf.plot("chr1:167.9mb-168.7mb")

axes[0].set_ylabel("Insulation\nscore")
axes[1].set_ylabel("Insulation\ndifference")
# end snippet regions plot
fig.savefig("../docsrc/api/analyse/images/comparisons_regions.png")
plt.close(fig)


# start snippet scores compare
示例#8
0
#fanc_base = '..'
fanc_base = '/Users/kkruse/dev/fanc'

# start snippet fancplot load bed
insulation_scores_1mb = fanc.load(
    "architecture/domains/fanc_example_100kb.insulation_1mb.bed")
insulation_scores_2mb = fanc.load(
    "architecture/domains/fanc_example_100kb.insulation_2mb.bed")
boundaries_1mb = fanc.load(
    "architecture/domains/fanc_example_100kb.insulation_boundaries_1mb.bed")
boundaries_2mb = fanc.load(
    "architecture/domains/fanc_example_100kb.insulation_boundaries_2mb.bed")
# end snippet fancplot load bed

# start snippet fancplot line fill
hp = fancplot.LinePlot(insulation_scores_1mb)
hp.plot('chr18:6mb-10mb')
hp.show()
# end snippet fancplot line fill

hp.save(os.path.join(fanc_base, 'docsrc/api/plot/images/plot_line.png'))

# start snippet fancplot line nofill
hp = fancplot.LinePlot(insulation_scores_1mb, fill=False)
hp.plot('chr18:6mb-10mb')
hp.show()
# end snippet fancplot line nofill

hp.save(os.path.join(fanc_base, 'docsrc/api/plot/images/plot_line_nofill.png'))

# start snippet fancplot line mid
def plot_region(name, region):
    output_file = os.path.join("figures", "figure_4_panels", name + ".pdf")
    logging.info("Working on %s", name)
    logging.info("Will write output to %s", output_file)

    gd7_nc14_hic = fanc.load(os.path.join("data", "hic", "merged", "gd7-nc14",
                                          "hic", "gd7-nc14_5kb.hic"),
                             mode="r")
    gd7_nc14_hic_plot = fancplot.HicPlot(gd7_nc14_hic,
                                         norm="log",
                                         vmin=1e-03,
                                         vmax=1e-01,
                                         draw_minor_ticks=False,
                                         title="gd7",
                                         max_dist='250kb')
    gd7_nc14_diff = fanc.load(os.path.join(
        "data", "hic", "merged", "gd7-nc14", "hic",
        "diff_control-nc14_gd7-nc14_5kb.hic"),
                              mode="r")
    gd7_nc14_diff_plot = fancplot.HicPlot(gd7_nc14_diff,
                                          norm="lin",
                                          colormap='bwr_r',
                                          vmin=-0.01,
                                          vmax=0.01,
                                          draw_minor_ticks=False,
                                          max_dist='250kb')

    Tollrm910_nc14_hic = fanc.load(os.path.join("data", "hic", "merged",
                                                "Tollrm910-nc14", "hic",
                                                "Tollrm910-nc14_5kb.hic"),
                                   mode="r")
    Tollrm910_nc14_hic_plot = fancplot.HicPlot(Tollrm910_nc14_hic,
                                               norm="log",
                                               vmin=1e-03,
                                               vmax=1e-01,
                                               draw_minor_ticks=False,
                                               title="Tollrm910",
                                               max_dist='250kb')
    Tollrm910_nc14_diff = fanc.load(os.path.join(
        "data", "hic", "merged", "Tollrm910-nc14", "hic",
        "diff_control-nc14_Tollrm910-nc14_5kb.hic"),
                                    mode="r")
    Tollrm910_nc14_diff_plot = fancplot.HicPlot(Tollrm910_nc14_diff,
                                                norm="lin",
                                                colormap='bwr_r',
                                                vmin=-0.01,
                                                vmax=0.01,
                                                draw_minor_ticks=False,
                                                max_dist='250kb')

    Toll10B_nc14_hic = fanc.load(os.path.join("data", "hic", "merged",
                                              "Toll10B-nc14", "hic",
                                              "Toll10B-nc14_5kb.hic"),
                                 mode="r")
    Toll10B_nc14_hic_plot = fancplot.HicPlot(Toll10B_nc14_hic,
                                             norm="log",
                                             vmin=1e-03,
                                             vmax=1e-01,
                                             draw_minor_ticks=False,
                                             title="Toll10B",
                                             max_dist='250kb')
    Toll10B_nc14_diff = fanc.load(os.path.join(
        "data", "hic", "merged", "Toll10B-nc14", "hic",
        "diff_control-nc14_Toll10B-nc14_5kb.hic"),
                                  mode="r")
    Toll10B_nc14_diff_plot = fancplot.HicPlot(Toll10B_nc14_diff,
                                              norm="lin",
                                              colormap='bwr_r',
                                              vmin=-0.01,
                                              vmax=0.01,
                                              draw_minor_ticks=False,
                                              max_dist='250kb')

    genes = "external_data/flybase/dmel-all-r6.30.gtf.gz"
    genes_plot = fancplot.GenePlot(genes,
                                   squash=True,
                                   group_by="gene_symbol",
                                   aspect=0.15,
                                   label_field="gene_symbol",
                                   show_labels=False,
                                   draw_minor_ticks=False)

    rnaseq_dict = {
        name:
        os.path.join("external_data", "koenecke_2016_2017", "rnaseq_aligned",
                     name + "_sorted_filtered_merged_canonical_chrs_rnaseq.bw")
        for name in ["gd7", "tlrm910", "tl10b"]
    }

    h3k27ac_dict = {
        name: os.path.join(
            "external_data", "koenecke_2016_2017", "chipseq_aligned",
            "H3K27ac_" + name + "_sorted_filtered_merged_canonical_chrs.bw")
        for name in ["gd7", "tl10b"]
    }
    h3k27ac_dict["Tollrm910"] = os.path.join(
        "external_data", "extra_chip-seq", "chipseq_aligned",
        "H3K27ac_Tollrm910_sorted_filtered_merged_canonical_chrs.bw")

    h3k27me3_dict = {
        name: os.path.join(
            "external_data", "koenecke_2016_2017", "chipseq_aligned",
            "H3K27me3_" + name + "_sorted_filtered_merged_canonical_chrs.bw")
        for name in ["gd7", "tl10b"]
    }
    h3k27me3_dict["Tollrm910"] = os.path.join(
        "external_data", "extra_chip-seq", "chipseq_aligned",
        "H3K27me3_Tollrm910_sorted_filtered_merged_canonical_chrs.bw")

    # ins_dict = {name: os.path.join("data", "boundaries", name + "_2kb_8.bw")
    #             for name in ["gd7-nc14", "Tollrm910-nc14", "Toll10B-nc14", "3-4h"]}

    rnaseq_ylim = fancplot.helpers.LimitGroup()
    rnaseq_ylim = [0, 10]
    h3k27ac_ylim = fancplot.helpers.LimitGroup()
    h3k27me3_ylim = fancplot.helpers.LimitGroup()

    rnaseq_plot_gd7 = fancplot.LinePlot(rnaseq_dict['gd7'],
                                        fill=False,
                                        plot_kwargs={'color': "#648fff"},
                                        draw_minor_ticks=False,
                                        aspect=0.05,
                                        ylim=rnaseq_ylim,
                                        n_yticks=2)

    h3k27ac_plot_gd7 = fancplot.LinePlot(h3k27ac_dict['gd7'],
                                         fill=False,
                                         plot_kwargs={'color': "#648fff"},
                                         draw_minor_ticks=False,
                                         aspect=0.05,
                                         ylim=h3k27ac_ylim,
                                         n_yticks=2)
    h3k27me3_plot_gd7 = fancplot.LinePlot(h3k27me3_dict['gd7'],
                                          fill=False,
                                          plot_kwargs={'color': "#648fff"},
                                          draw_minor_ticks=False,
                                          aspect=0.05,
                                          ylim=h3k27me3_ylim,
                                          n_yticks=2)

    rnaseq_plot_Tollrm910 = fancplot.LinePlot(rnaseq_dict['tlrm910'],
                                              fill=False,
                                              plot_kwargs={'color': "#dc267f"},
                                              draw_minor_ticks=False,
                                              aspect=0.05,
                                              ylim=rnaseq_ylim,
                                              n_yticks=2)

    h3k27ac_plot_Tollrm910 = fancplot.LinePlot(
        h3k27ac_dict['Tollrm910'],
        fill=False,
        plot_kwargs={'color': "#dc267f"},
        draw_minor_ticks=False,
        aspect=0.05,
        ylim=h3k27ac_ylim,
        n_yticks=2)
    h3k27me3_plot_Tollrm910 = fancplot.LinePlot(
        h3k27me3_dict['Tollrm910'],
        fill=False,
        plot_kwargs={'color': "#dc267f"},
        draw_minor_ticks=False,
        aspect=0.05,
        ylim=h3k27me3_ylim,
        n_yticks=2)

    rnaseq_plot_toll10b = fancplot.LinePlot(rnaseq_dict['tl10b'],
                                            fill=False,
                                            plot_kwargs={'color': "#ffb000"},
                                            draw_minor_ticks=False,
                                            aspect=0.05,
                                            ylim=rnaseq_ylim,
                                            n_yticks=2)

    h3k27ac_plot_toll10b = fancplot.LinePlot(h3k27ac_dict['tl10b'],
                                             fill=False,
                                             plot_kwargs={'color': "#ffb000"},
                                             draw_minor_ticks=False,
                                             aspect=0.05,
                                             ylim=h3k27ac_ylim,
                                             n_yticks=2)
    h3k27me3_plot_toll10b = fancplot.LinePlot(h3k27me3_dict['tl10b'],
                                              fill=False,
                                              plot_kwargs={'color': "#ffb000"},
                                              draw_minor_ticks=False,
                                              aspect=0.05,
                                              ylim=h3k27me3_ylim,
                                              n_yticks=2)

    gd7_enh = "data/supplementary_tables/gd7_candidate_enhancers.bed"
    gd7_enh_plot = fancplot.GenomicFeaturePlot(gd7_enh,
                                               aspect=0.02,
                                               color="#648fff",
                                               draw_minor_ticks=False)

    Tollrm910_enh = "data/supplementary_tables/Tollrm910_candidate_enhancers.bed"
    Tollrm910_enh_plot = fancplot.GenomicFeaturePlot(Tollrm910_enh,
                                                     aspect=0.02,
                                                     color="#dc267f",
                                                     draw_minor_ticks=False)

    toll10b_enh = "data/supplementary_tables/Toll10B_candidate_enhancers.bed"
    toll10b_enh_plot = fancplot.GenomicFeaturePlot(toll10b_enh,
                                                   aspect=0.02,
                                                   color="#ffb000",
                                                   draw_minor_ticks=False)

    plots = [
        gd7_nc14_hic_plot, gd7_nc14_diff_plot, rnaseq_plot_gd7,
        h3k27ac_plot_gd7, gd7_enh_plot, h3k27me3_plot_gd7,
        Tollrm910_nc14_hic_plot, Tollrm910_nc14_diff_plot,
        rnaseq_plot_Tollrm910, h3k27ac_plot_Tollrm910, Tollrm910_enh_plot,
        h3k27me3_plot_Tollrm910, Toll10B_nc14_hic_plot, Toll10B_nc14_diff_plot,
        rnaseq_plot_toll10b, h3k27ac_plot_toll10b, toll10b_enh_plot,
        h3k27me3_plot_toll10b, genes_plot
    ]

    with fancplot.GenomicFigure(plots, ticks_last=True) as gfig:
        fig, axes = gfig.plot(region)
        fig.savefig(output_file)
示例#10
0
# start snippet insulation multiplot
p = fancplot.GenomicVectorArrayPlot(insulation,
                                    colormap='RdBu_r',
                                    vmin=-1,
                                    vmax=1,
                                    genomic_format=True)
p.plot('chr18:18mb-28mb')
# end snippet insulation multiplot
fig.savefig("../docsrc/api/analyse/images/domains_multi.png")
plt.close(fig)

fig, ax = plt.subplots()
# start snippet insulation singleplot
p = fancplot.LinePlot(insulation,
                      ylim=(-1, 1),
                      colors=['darkturquoise'],
                      style="mid",
                      attribute="insulation_1000000")
p.plot('chr18:18mb-28mb')
# end snippet insulation singleplot
fig.savefig("../docsrc/api/analyse/images/domains_single.png")
plt.close(fig)

# start snippet boundaries run
boundaries = fanc.Boundaries.from_insulation_score(insulation,
                                                   window_size=1000000)
# end snippet boundaries run

# start snippet boundaries regions
for boundary in boundaries.regions:
    score = boundary.score
Toll10B_stg10_hic_plot = fancplot.HicPlot(Toll10B_stg10_hic, vmin=1e-03,
                                         vmax=1e-01, norm="log",
                                         draw_minor_ticks=False,
                                         title="Toll10B")

genes = "external_data/flybase/dmel-all-r6.30.gtf.gz"
genes_plot = fancplot.GenePlot(genes, squash=True, group_by="gene_symbol",
                               aspect=0.15, label_field="gene_symbol",
                               show_labels=False, draw_minor_ticks=False)

rnaseq_dict = {name: os.path.join("external_data", "modencode_white", "rnaseq_aligned",
                                  name + "_sorted_filtered_merged_canonical_chrs_rnaseq.bw")
               for name in ["E0-4", "E4-8"]}

rnaseq_plot_E04 = fancplot.LinePlot(rnaseq_dict['E0-4'], fill=False,
                                          plot_kwargs={'color': "black"},
                                          draw_minor_ticks=False, aspect=0.05, 
                                          n_yticks=2)
rnaseq_plot_E48 = fancplot.LinePlot(rnaseq_dict['E4-8'], fill=False,
                                          plot_kwargs={'color': "black"},
                                          draw_minor_ticks=False, aspect=0.05,
                                          n_yticks=2)


def plot_region(name, region, promoter, rnaseq_ylim):
    output_file = os.path.join("figures", "figure_stg10_panels", name + ".pdf")
    logging.info("Working on %s", name)
    logging.info("Will write output to %s", output_file)

    control_v4c = fancplot.Virtual4CPlot(control_stg10_hic, viewpoint=promoter,
                                     aspect=0.05, color="black",
                                     draw_minor_ticks=False)
示例#12
0
                                              vmin=-1, vmax=1, draw_tick_legend=False,
                                              draw_minor_ticks=False, draw_tick_labels=False)
p_ins_array.plot(triangular_plotting_region)
p_ins_array.colorbar.set_label('Insulation score')

ax_ins_array.set_xticks([triangular_plotting_region.start,
                         triangular_plotting_region.center,
                         triangular_plotting_region.end])
ax_ins_array.set_yticks([50000, 200000, 1000000])
ax_ins_array.set_yticklabels(['50kb', '200kb', '1mb'])
ax_ins_array.set_ylabel('Window\nsize (bp)')

# 10. Insulation score
insulation_single = insulation.score_regions(100000)

p_ins = fancplot.LinePlot(insulation_single, ax=ax_ins, style='mid', plot_kwargs={'color': '#79C7C5'},
                          draw_tick_legend=False, draw_minor_ticks=False)
p_ins.plot(triangular_plotting_region)
ax_ins.set_xticks([triangular_plotting_region.start,
                   triangular_plotting_region.center,
                   triangular_plotting_region.end])
ax_ins.set_ylabel('Insulation\nscore 100kb')

# 11. Directionality flame
directionality = fanc.load(directionality_file)


p_dir_array = fancplot.GenomicVectorArrayPlot(directionality, y_scale='log', ax=ax_dir_array,
                                              colormap='PuOr', cax=cax_dir_array,
                                              vmin=-0.1, vmax=0.1,
                                              draw_tick_legend=False,
                                              draw_minor_ticks=False, draw_tick_labels=False)