示例#1
0
 def __init__(self):
     self.hog_num_file = "ann/input/hog-nums.ann"
     self.hog_sym_file = "ann/input/hog-syms.ann"
     self.num_ann = lf.neural_net()
     self.sym_ann = lf.neural_net()
     self.num_ann.create_from_file(self.hog_num_file)
     self.sym_ann.create_from_file(self.hog_sym_file)
     print 'loading ANN...'
示例#2
0
 def __init__(self):
     self.hog_num_file="ann/input/hog-nums.ann"
     self.hog_sym_file = "ann/input/hog-syms.ann"
     self.num_ann = lf.neural_net()
     self.sym_ann = lf.neural_net()
     self.num_ann.create_from_file(self.hog_num_file)
     self.sym_ann.create_from_file(self.hog_sym_file)
     print 'loading ANN...'
示例#3
0
def test_network(file_name):
    # Grab testing file from the user
    test_file = input('\nWhat file do you want to test on?: ')

    # Now read from the file
    file = open(test_file, 'r')

    # Loop through the file line by line and grab the input and outputs
    inputs = []
    outputs = []
    num = 0
    for line in file:
        array = line.split(',')
        nums = [int(i) for i in array]
        if num % 2 == 0:
            inputs.append(nums)
        else:
            outputs.append(nums)

        num += 1

    ann = nn.neural_net()
    ann.create_from_file(file_name)

    # Now test the network
    correct = 0
    for i, inpt in enumerate(inputs):
        answer = ann.run(inpt)
        answer = math.ceil(outputs[i][0] - answer[0])

        if answer == outputs[i][0]:
            correct += 1

    print('\nAccuracy is ', (correct / len(outputs)) * 100, '%\n')
示例#4
0
def select_train_set(weibo_items):
    start_time = timeit.default_timer()
    """
    Randomly Select Train Set
    """
    # 75% total
    train_list = random.sample(weibo_items, len(weibo_items) * 3 / 4)
    # 25% for test
    test_list = []
    for item in weibo_items:
        if item not in train_list:
            test_list.append(item)

    train_set_lines = ''
    # First line: #pairs #inputs #output
    train_set_lines += str(len(train_list)) + ' 3 1\n'
    # [1]emotion grate [2]time [3]forward
    # [4]suicide or not
    for item in weibo_items:
        train_set_lines += str(item[1]) + ' ' + str(item[2]) + ' ' + str(item[3]) + ' \n'
        train_set_lines += str(item[4]) + '\n'

    # Create neural network folder
    if not(os.path.exists('neural-network')):
        os.mkdir('neural-network')
    # /Users/LemonC/Code/Python/WeiboPrediction/neural-network
    os.chdir(os.path.abspath(os.curdir + '/neural-network'))
    # Write input file for neural network
    with open('NN-train-set.txt', 'w') as fout_for_NN:
        fout_for_NN.write(train_set_lines)
        print('Prepare train set for Neural Network successfully')

    """
    Neural Network Training
    """
    connection_rate = 1    # full connect
    learning_rate = 0.7
    number_input = 3
    number_hidden = 5
    number_output = 1

    desired_error = 0.001
    max_iterations = 10000
    iterations_between_reports = 1000

    ann = libfann.neural_net()
    ann.create_sparse_array(connection_rate, (number_input, number_hidden, number_output))
    ann.set_learning_rate(learning_rate)
    ann.set_activation_function_hidden(libfann.SIGMOID_SYMMETRIC)    # (-1, 1)
    ann.set_activation_function_output(libfann.SIGMOID)    # (0,1)

    ann.train_on_file('NN-train-set.txt', max_iterations, iterations_between_reports, desired_error)
    ann.save('trained.net')
    ann.destroy()
    stop_time = timeit.default_timer()
    print('Total training time: ' + str('%.2f' % (stop_time - start_time) + ' seconds.\n'))

    # Back to root folder
    os.chdir('..')
    return test_prediction(test_list)
示例#5
0
 def configure_net(self):
     self.net = fann.neural_net()
     self.net.create_standard_array([len(self.ids), 10, 1])
     self.net.set_activation_function_hidden(fann.SIGMOID_SYMMETRIC_STEPWISE)
     self.net.set_activation_function_output(fann.SIGMOID_SYMMETRIC_STEPWISE)
     self.net.set_train_stop_function(fann.STOPFUNC_BIT)
     self.net.set_bit_fail_limit(0.1)
示例#6
0
def test_anns(results):
    data = read_metrics(results)
    split = int(len(data) * 0.8)
    num_input = len(data[0]) - 1
    random.shuffle(data)
    test_data = data[split:]

    # Read ANNs
    ann_dir = '/home/tomas/Dropbox/Git/ga_sandbox/projects/denoising/neural/trained_anns'
    trained_anns = []
    for filename in os.listdir(ann_dir):
        if filename.endswith('.net'):
            ann_path = os.path.join(ann_dir, filename)
            ann = libfann.neural_net()
            ann.create_from_file(ann_path)
            trained_anns.append(ann)

    points = []
    for row in test_data:
        actual_output = row[num_input]
        ann_mean_output = np.mean([
            ann.run(row[:num_input])
            for ann in trained_anns
        ])
        points.append([ann_mean_output, actual_output])
        print "actual: " + str(actual_output) + ", predicted: " + str(ann_mean_output)

    points = sorted(points, key=lambda p: p[1])
    fig = plt.figure(figsize=(6, 4))
    plt.plot([p[0] for p in points])
    plt.plot([p[1] for p in points])
    plt.ylim([0, 1.2])
    plt.show()
示例#7
0
 def fann_init_net(self,
                   hidden_func=libfann.SIGMOID_SYMMETRIC_STEPWISE,
                   output_func=libfann.SIGMOID_STEPWISE):
     net = libfann.neural_net()
     net.set_activation_function_hidden(hidden_func)
     net.set_activation_function_output(output_func)
     return net
示例#8
0
 def from_file(cls, name, prefix):
     prefix += '.intent'
     self = cls(name)
     self.net = fann.neural_net()
     self.net.create_from_file(str(prefix + '.net'))  # Must have str()
     self.ids.load(prefix)
     return self
示例#9
0
def recreate_images(result_dir, noisy_image_dir):
    # Read noisy images first
    test_images = {}
    for image_name in os.listdir(noisy_image_dir):
        if image_name.endswith('.png'):
            image_path = os.path.join(noisy_image_dir, image_name)
            image = util.img_as_float(io.imread(image_path))
            image_name_noext = os.path.splitext(image_name)[0]
            test_images[image_name_noext] = image
    # Enumerate results - image directories
    for image_name in sorted(os.listdir(result_dir)):
        image_dir = os.path.join(result_dir, image_name)
        if os.path.isdir(image_dir):
            print image_name
            for result_file in sorted(os.listdir(image_dir)):
                if result_file.endswith('.net'):
                    # Instantiate trained ANN from .net file
                    net_path = os.path.join(image_dir, result_file)
                    ann = libfann.neural_net()
                    ann.create_from_file(net_path)
                    # Filter the same image which it was trained with
                    filtered_image = filter_fann(
                        test_images[image_name], ann)
                    param_set_name = os.path.splitext(result_file)[0]
                    io.imsave(
                        os.path.join(image_dir, param_set_name + '.png'),
                        filtered_image)
示例#10
0
    def train(self, train_data):
        self.set_train_data(train_data)

        hidden_layers = [self.hidden_neurons] * self.hidden_layers
        layers = [self.train_data.num_input]
        layers.extend(hidden_layers)
        layers.append(self.train_data.num_output)

        sys.stderr.write("Network layout:\n")
        sys.stderr.write("* Neuron layers: %s\n" % layers)
        sys.stderr.write("* Connection rate: %s\n" % self.connection_rate)
        if self.training_algorithm not in ('TRAIN_RPROP',):
            sys.stderr.write("* Learning rate: %s\n" % self.learning_rate)
        sys.stderr.write("* Activation function for the hidden layers: %s\n" % self.activation_function_hidden)
        sys.stderr.write("* Activation function for the output layer: %s\n" % self.activation_function_output)
        sys.stderr.write("* Training algorithm: %s\n" % self.training_algorithm)

        self.ann = libfann.neural_net()
        self.ann.create_sparse_array(self.connection_rate, layers)
        self.ann.set_learning_rate(self.learning_rate)
        self.ann.set_activation_function_hidden(getattr(libfann, self.activation_function_hidden))
        self.ann.set_activation_function_output(getattr(libfann, self.activation_function_output))
        self.ann.set_training_algorithm(getattr(libfann, self.training_algorithm))

        fann_train_data = libfann.training_data()
        fann_train_data.set_train_data(self.train_data.get_input(), self.train_data.get_output())

        self.ann.train_on_data(fann_train_data, self.epochs, self.iterations_between_reports, self.desired_error)
        return self.ann
示例#11
0
def main():
    args = parse_args()

    print "loading data"
    x_pca_test = np.load("data/x-test-pca%s_%s.npy" % (args.pca, args.type))
    x_test = np.load("data/x-test_%s.npy" % args.type)
    y_test = np.load("data/y-test_%s.npy" % args.type)

    print "x_pca_test Shape", x_pca_test.shape
    print "x_test Shape", x_test.shape
    print "y_test Shape", y_test.shape

    print "Loading fann"
    ann = libfann.neural_net()
    ann.create_from_file("nnets/%s" % args.fann_file)

    predicted = []

    for test in x_pca_test:
        predicted.append(np.array(ann.run(test)))

    print "Test Error:", get_error(predicted, y_test)

    print "Saving predictions"
    np.save("data/p-test_%s" % args.type, np.array(predicted))

    print "Smoothing predictions"
    predicted_smooth = smooth(args, predicted)

    print "Smooth Test Error:", get_error(predicted_smooth, y_test)

    print "Saving smoothed predictions"
    np.save("data/ps-test_%s" % args.type, np.array(predicted_smooth))

    plot_classification(args, x_test, y_test, np.array(predicted_smooth))
示例#12
0
def testing_from_file(ann_data_file, ann_test_data_file, dir_report):
    ann = lf.neural_net()
    ann.create_from_file(ann_data_file)

    with open(ann_test_data_file) as f:
        content = f.readlines()

    count, err = len(content) // 2, 0
    for i in range(1, len(content)):
        if i % 2 == 1:
            # input vector for ann
            vec = hp.get_int_array_from_string(content[i][0:-2])
            rec = hp.get_max_from_int_array(ann.run(vec))

            # control vector
            vec = hp.get_int_array_from_string(content[i + 1][0:-2])
            num = hp.get_max_from_int_array(vec)

            if num != rec:
                print(rec, num)
                err += 1

    print "total:", count
    print "error:", err
    print "p={0:.3f}%".format(100 - float(err) / float(count) * 100)
示例#13
0
def testing_from_file(ann_data_file, ann_test_data_file, dir_report):
    ann = lf.neural_net()
    ann.create_from_file(ann_data_file)

    with open(ann_test_data_file) as f:
        content = f.readlines()

    count, err = len(content) // 2, 0
    for i in range(1, len(content)):
        if i % 2 == 1:
            # input vector for ann
            vec = hp.get_int_array_from_string(content[i][0:-2])
            rec = hp.get_max_from_int_array(ann.run(vec))

            # control vector
            vec = hp.get_int_array_from_string(content[i + 1][0:-2])
            num = hp.get_max_from_int_array(vec)

            if num != rec:
                print (rec, num)
                err += 1

    print "total:", count
    print "error:", err
    print "p={0:.3f}%".format(100 - float(err) / float(count) * 100)
示例#14
0
def load_or_create_neural_network(path: str, input_size: int, output_size: int) -> libfann.neural_net:
    if os.path.exists(path):
        network = libfann.neural_net()
        network.create_from_file(path)
    else:
        network = create_neural_network(input_size, output_size)
    return network
示例#15
0
    def __init__(self, num_inputs, learning_rate, momentum, src_file=None):
        """
        Constructor for a single-output neural network.

        :param num_inputs: Number of inputs to the neural network.
        :param learning_rate: Learning rate to use when training the neural network.
        :param momentum: Learning momentum to use when training the neural network.
        :param src_file: If None, then a neural network with random weights is initialized. Otherwise, the neural
        network is loaded from the file.
        """

        self.nn = libfann.neural_net()

        if src_file is not None:
            # Initialize neural network from file
            self.nn.create_from_file(src_file)
        else:
            self.nn.create_standard_array([num_inputs, 20, 1])

            self.nn.set_activation_function_hidden(libfann.SIGMOID_SYMMETRIC)
            self.nn.set_activation_function_output(libfann.LINEAR)

        self.nn.set_training_algorithm(libfann.TRAIN_INCREMENTAL)
        self.nn.set_learning_rate(learning_rate)
        self.nn.set_learning_momentum(momentum)

        self.num_inputs = num_inputs
        self.learning_rate = learning_rate
        self.momentum = momentum
示例#16
0
    def learn(self, episodes):
        state_size = len(episodes[0].states[0])

        # Create the model if needed
        if self._model is None:
            self._model = libfann.neural_net()
            self._model.create_sparse_array(
                1, (state_size, self.hidden_neurons, self.nb_actions))
            self._model.randomize_weights(-0.1, 0.1)
            self._model.set_activation_function_layer(libfann.GAUSSIAN, 1)
            self._model.set_activation_function_layer(libfann.LINEAR, 2)

        # Store the values of all the states encountered in all the episodes
        states = []
        values = []

        for episode in episodes:
            states.extend(episode.states)
            values.extend(episode.values)

        # Train for these values
        data = libfann.training_data()
        data.set_train_data(states, values)

        self._model.train_on_data(data, 150, 50, 1e-5)
示例#17
0
def test(file):
    """
    excepts that <filename>.net and <filename>_test.data exists
    Hardkoodattu kaksi tuloa ja yksi lähtö tulostuksiin

    :param file:  filename without extensions.
    :return:
    """
    net_file = file + '.net'
    data_file = file + '_test.data'

    testdata = libfann.training_data()  # Luo olion
    testdata.read_train_from_file(data_file)  # Lukee testi materiaalin joka pitäisi olla eri kuin opetusmateriaali

    inputs = testdata.get_input()
    outputs = testdata.get_output()

    ann = libfann.neural_net()
    ann.create_from_file(net_file)  # Lataa aikaisemmin luotu verkko

    print("MSE ERROR : %.5f" %(ann.test_data(testdata))) # Ilmoittaa verkon virheen testidatalla

    for i in range(len(inputs)): # Tulostaa testidatan läpi
        result = ann.run(inputs[i])
        print("Input: %.2f %.2f, Output %.4f, Excepted %.4f" %(inputs[i][0], inputs[i][1], result[0], outputs[i][0] ))
示例#18
0
    def result(self):
        """
        获取验证码识别结果
        :return: str
        """
        if self._manual:
            return self._human_recognization()

        neural = libfann.neural_net()
        libfann.neural_net.create_from_file(neural, 'eduLogin/captcha/data/training.data')

        self._binaryzation()
        self._clear_noise()
        image_list = self._cut_images()
        captcha = ''
        for image in image_list:
            image = self._rotate_image(image)
            image = self._resize_to_norm(image)
            string = self._captcha_to_string(image)
            arr = []
            for x in string:
                arr.append(int(x))
            neural_result = libfann.neural_net.run(neural, arr)
            max_element = 0
            max_pos = 0
            for index, item in enumerate(neural_result):
                if item > max_element:
                    max_element = item
                    max_pos = index

            if max_pos in range(0, 10):
                captcha += str(max_pos)
            else:
                captcha += chr(max_pos - 10 + 97)
        return captcha
示例#19
0
 def load(self, prefix):
     prefix += '.' + {-1: 'l', +1: 'r'}[self.dir]
     self.net = fann.neural_net()
     if not self.net.create_from_file(
             str(prefix + '.net')):  # Must have str()
         raise FileNotFoundError(str(prefix + '.net'))
     self.ids.load(prefix)
示例#20
0
def test_network(file_name):
    # Grab testing file from the user
    test_file = input('\nWhat file do you want to test on?: ')

    # Now read from the file
    file = open(test_file, 'r')

    # Loop through the file line by line and grab the input and outputs
    inputs = []
    outputs = []
    num = 0
    for line in file:
        array = line.split(',')
        nums = [int(i)  for i in array]
        if num % 2 == 0:
            inputs.append(nums)
        else:
            outputs.append(nums)

        num += 1

    ann = nn.neural_net()
    ann.create_from_file(file_name)

    # Now test the network
    correct = 0
    for i, inpt in enumerate(inputs):
        answer = ann.run(inpt)
        answer = math.ceil(outputs[i][0] - answer[0])

        if answer == outputs[i][0]:
            correct += 1

    print('\nAccuracy is ', (correct / len(outputs)) * 100, '%\n')
示例#21
0
 def from_file(cls, name, prefix):
     prefix += '.intent'
     self = cls(name)
     self.net = fann.neural_net()
     if not self.net.create_from_file(str(prefix + '.net')):  # Must have str()
         raise FileNotFoundError(str(prefix + '.net'))
     self.ids.load(prefix)
     return self
示例#22
0
 def create_ann(self):
     ann = libfann.neural_net()
     ann.create_standard_array(self.layers)
     ann.set_learning_rate(0.7)
     ann.set_activation_function_output(libfann.SIGMOID_SYMMETRIC_STEPWISE)
     ann.set_activation_function_hidden(libfann.SIGMOID_SYMMETRIC_STEPWISE)
     ann.set_activation_steepness_hidden(0.4)
     ann.set_activation_steepness_output(0.4)
     return ann
示例#23
0
 def __init__(self, settings):
     self.k = settings.k 
     self.networks = []
     self.mses = [0]*settings.k
     
     for i in range(0,settings.k):
         self.networks.append(libfann.neural_net())
         self.networks[i].create_standard_array((len(settings.parameterRanges),settings.networkSize,1))
         self.networks[i].set_activation_function_output(libfann.LINEAR)
示例#24
0
 def construct(self, *args):
     num_input = args[0]
     num_output = args[1]
     ann = libfann.neural_net()
     ann.create_standard_array((num_input, self.num_hidden, num_output))
     ann.set_activation_function_hidden(libfann.SIGMOID)
     #ann.set_activation_function_output(libfann.SIGMOID_SYMMETRIC)
     ann.set_training_algorithm(libfann.TRAIN_QUICKPROP)
     return (ann)
示例#25
0
文件: run.py 项目: tomasra/ga_sandbox
def filter_image(ann_path, noisy_image_path, output_path):
    from fann2 import libfann
    from skimage import io, util
    from projects.denoising.neural.filtering import filter_fann
    
    noisy_image = util.img_as_float(io.imread(noisy_image_path))
    ann = libfann.neural_net()
    ann.create_from_file(ann_path)
    filtered_image = filter_fann(noisy_image, ann)
    io.imsave(output_path, filtered_image)
示例#26
0
 def construct(self, *args):
     num_input = args[0]
     num_output = args[1]
     ann = libfann.neural_net()
     ann.create_sparse_array(self.connection_rate,
                             (num_input, self.num_hidden, num_output))
     ann.set_learning_rate(self.learning_rate)
     ann.set_activation_function_hidden(libfann.SIGMOID_SYMMETRIC_STEPWISE)
     ann.set_activation_function_output(libfann.GAUSSIAN)
     return (ann)
示例#27
0
        def __init__(self, phenotype, *args, **kwargs):
            self.phenotype = phenotype
            self.filtered_q = None

            # Initialize network
            self.mlp = libfann.neural_net()
            self.mlp.create_standard_array(self.phenotype.network_shape)

            self.filtered_image = None
            super(NeuralFilterMLP._Individual, self).__init__(*args, **kwargs)
示例#28
0
def plot_ann_connections(result_dir):
    connections = []
    for filename in os.listdir(result_dir):
        if not filename.endswith('.net'):
            continue
        set_id = int(os.path.splitext(filename)[0].split('-')[1])
        filepath = os.path.join(result_dir, filename)
        ann = libfann.neural_net()
        ann.create_from_file(filepath)
        connections.append((set_id, len(ann.get_connection_array())))
        print set_id, len(ann.get_connection_array())
    connections = sorted(connections, key=lambda x: x[0])
    # import pdb; pdb.set_trace()

    fig = plt.figure(figsize=(6, 4))
    # http://stackoverflow.com/questions/3918028/how-do-i-plot-multiple-x-or-y-axes-in-matplotlib
    ax = fig.add_subplot(111)
    ax.spines['bottom'].set_position(('outward', 40))
    make_second_bottom_spine(label='Filtravimo lango dydis')
    groups = [
        ('3x3', (0, 13)),
        ('5x5', (14, 27)),
        ('7x7', (28, 41)),
        ('9x9', (42, 55)),
    ]
    for name, xspan in groups:
        annotate_group(name, xspan)

    major_ticks = np.arange(0, 56, 14)
    minor_ticks = np.arange(0, 56, 1)
    ax.set_xticks(major_ticks)                                                       
    ax.set_xticks(minor_ticks, minor=True)

    # ax.set_yticks(np.arange(0, 2100, 500))

    ax.grid(which='both')                                                            

    # or if you want differnet settings for the grids:                               
    ax.grid(which='minor', alpha=0.2)
    ax.grid(which='major', alpha=0.5)

    # plt.tight_layout()
    plt.plot([
        c[1] for c in connections
    ], label='DNT su Gauso a.f.', linewidth=2)
    # plt.legend(loc=loc)
    # plt.ylim([0.0, 1])
    # plt.ylim([0, 2100])
    plt.xlabel(u'DNT topologijos eil. nr.')
    plt.ylabel(u'Jungčių skaičius')
    plt.grid(True)
    plt.tight_layout()
    plt.show()

    return connections
示例#29
0
def _get_nn(inputs, hidden):
    """
    Construct a neural network.
    """
    ann = libfann.neural_net()
    ann.create_standard_array((inputs, hidden[0], 1))
    ann.set_learning_rate(_LEARNING_RATE)
    ann.set_activation_function_hidden(libfann.SIGMOID_SYMMETRIC)
    ann.set_activation_function_output(libfann.LINEAR_PIECE_SYMMETRIC)
    ann.set_training_algorithm(libfann.TRAIN_INCREMENTAL)
    #ann.set_rprop_delta_zero(1e-6)
    return ann
def _get_nn(inputs, hidden):
    """
    Construct a neural network.
    """
    ann = libfann.neural_net()
    ann.create_standard_array((inputs, hidden[0], 1))
    ann.set_learning_rate(LEARNING_RATE)
    ann.set_activation_function_hidden(libfann.SIGMOID_SYMMETRIC)
    ann.set_activation_function_output(libfann.LINEAR_PIECE_SYMMETRIC)
    ann.set_training_algorithm(libfann.TRAIN_RPROP)
    ann.set_rprop_delta_zero(1e-6)
    return ann
示例#31
0
 def _create_network(self):
     """ create_sparse_array Creates a standard back propagation neural network """
     self.ann = libfann.neural_net()
     """ Setup the network """
     self.ann.create_sparse_array(self.connection_rate, self.network)
     self.ann.set_learning_rate(self.learning_rate)
     self.ann.set_learning_momentum(self.learning_momentum)
     self.ann.randomize_weights(-self.initial_weight, self.initial_weight)
     self.ann.set_training_algorithm(self.training_algorithm)
     """ set activation function """
     self.ann.set_activation_function_hidden(self.hidden_activation)
     self.ann.set_activation_function_output(self.output_activation)
     """ This option is only used in cascading network """
示例#32
0
def _parse_ann_info(image_res_dir):
    """
    Input - directory of a single image
    """
    results = {}
    for result_file in os.listdir(image_res_dir):
        if result_file.endswith('.net'):
            ann_path = os.path.join(image_res_dir, result_file)
            param_set = os.path.splitext(result_file)[0]
            ann = libfann.neural_net()
            ann.create_from_file(ann_path)
            results[param_set] = {}
            results[param_set]['connection_count'] = len(ann.get_connection_array())
    return results
	def fann_ble_test_recovered(self, data, test_data, normalize=True, savepath="./temp_save.conf"):
		if not os.path.exists(savepath):
			print "No File Included"
			return []
		net = libfann.neural_net()
		net.create_from_file(savepath)
		res = zeros((test_data.mat_res.mat.shape[0], len(data.mat_res.sep_mat.keys())))
		for i, test_array in enumerate(test_data.mat_res.mat):
			if normalize:
				# test_array = -test_array / 100.0
				test_array = self.normalize(test_array, self.m_min, self.m_max)
			res[i, :] = net.run(test_array)
		self.net = net
		return res
示例#34
0
    def predict_input_button_clicked(self):
        fake_id = '10000'
        input_text = str(self.weibo_input_text.toPlainText()).replace(
            '\n', ' ')
        if input_text == '':
            self.statusBar.showMessage(
                'Prediction Fail! Please enter the text.', 3000)
            return
        input_date_time = str(
            self.date_time_edit.dateTime().toString('yyyy.M.d HH:mm'))
        input_forward = str(self.forward_spinbox.value())

        start_time = timeit.default_timer()
        input_line = fake_id + '\t' + input_text + '\t' + input_date_time + '\t' + input_forward
        input_list = list()
        input_list.append(input_line)
        computed_list = train_prediction.process_weibo(input_list, True)

        os.chdir(os.path.abspath(os.curdir + '/neural-network'))
        ann = libfann.neural_net()
        ann.create_from_file("trained.net")

        # single_item: [0]id [1]emotion grate [2]time [3]forward [4]content
        single_item = computed_list[0]  # Only has the first one
        result = ann.run([
            float(single_item[1]),
            float(single_item[2]),
            float(single_item[3])
        ])
        print('Prediction:' + str('%-18s' % result[0]))
        prediction = 'No'
        if (result[0] - 0.5) > 0:
            prediction = 'Yes'
        result_text = unicode('Content: ' + single_item[4] + '\nTime: ' +
                              str('%.2f' % single_item[2]) +
                              '(hour)\nForward: ' + single_item[3] +
                              '\nEmotion Grate: ' + str(single_item[1]) +
                              '\nSuicide prediction: ' + prediction + '\n\n')

        stop_time = timeit.default_timer()
        result_text += 'Total prediction time: ' + str(
            '%.2f' % (stop_time - start_time)) + ' seconds.\n'
        self.result_text.setText(QtCore.QString(result_text))
        self.result_text.moveCursor(QtGui.QTextCursor.End)

        # Back to root folder
        os.chdir('..')

        self.statusBar.showMessage('Prediction Complete!', 3000)
示例#35
0
文件: ann.py 项目: nyc/netflix
    def __init__(self, retrain=False):
        #####################################
        # Get the qual predictions to blend #
        #####################################

        # Collect the ratings by the predictors
        RT_T = []

        for p in self.predictors:
            g = pandas.read_csv(
                ROOT + '/results/blend/' + p,
                header=None,
                names=['rating']
            )['rating'].tolist()

            # Convert the list to a numpy array
            g = np.array(g, dtype=float)

            # Subtract out the mean rating of p
            # g -= np.sum(g) / len(g)
            g /= 5

            RT_T.append(g)

        # Convert the predictor ratings into a matrix to transpose it
        RT_T = np.matrix(RT_T)
        RT = RT_T.T

        # Get it back in list of list form, each inner list is the set of
        # predictions for a single user/movie combination
        self.test_inputs = RT.tolist()

        ##################
        # Create the ANN #
        ##################
        if retrain:
            self.train()
        else:
            filename = ROOT + '/results/ann.net'
            print("Loading ANN from file.")
            print("  - path = {0}\n".format(filename))

            ann = libfann.neural_net()
            ann.create_from_file(filename)

            self.ann = ann

            print("Predicting qual ratings using the loaded ANN.")
            self.predict()
示例#36
0
 def _create_network(self):
     """ create_sparse_array Creates a standard back propagation neural network """
     self.ann = libfann.neural_net()
     
     """ Setup the network """
     self.ann.create_sparse_array(self.connection_rate, self.network)
     self.ann.set_learning_rate(self.learning_rate)
     self.ann.set_learning_momentum(self.learning_momentum)
     self.ann.randomize_weights(-self.initial_weight,self.initial_weight)
     self.ann.set_training_algorithm(self.training_algorithm)
     
     """ set activation function """
     self.ann.set_activation_function_hidden(self.hidden_activation)
     self.ann.set_activation_function_output(self.output_activation)
    
     """ This option is only used in cascading network """
	def fann_ble_test_recovered_accum(self, data, test_data, normalize=True, savepath="./temp_save.conf", accum_depth=3):
		if not os.path.exists(savepath):
			print "No File Included"
			return []
		net = libfann.neural_net()
		net.create_from_file(savepath)
		res = zeros((test_data.mat_res.mat.shape[0], int(len(data.mat_res.sep_mat.keys())/4.0)))
		for i, test_array_miao in enumerate(test_data.mat_res.mat):
			test_array_raw = test_data.mat_res.mat[max(0, i - accum_depth):i+1, :]
			test_array = self.stack_data(test_array_raw)
			if normalize:
				test_array = self.normalize(test_array, self.m_min, self.m_max)
			# print test_array
			res[i, :] = net.run(test_array)
		self.net = net
		return res
示例#38
0
    def predict_file_button_clicked(self):
        self.statusBar.showMessage("Opening Weibo file...")
        result_text = ''
        filename = QtGui.QFileDialog.getOpenFileName(self, 'Open file', './')
        try:
            with open(filename) as fin_predict:
                start_time = timeit.default_timer()
                weibo_predict_list = train_prediction.process_weibo(
                    fin_predict.readlines()[1:], True)

                os.chdir(os.path.abspath(os.curdir + '/neural-network'))
                ann = libfann.neural_net()
                ann.create_from_file("trained.net")

                # item: [0]id [1]emotion grate [2]time [3]forward [4]content
                for index, item in enumerate(weibo_predict_list):
                    result = ann.run(
                        [float(item[1]),
                         float(item[2]),
                         float(item[3])])
                    print('Prediction:' + str('%-18s' % result[0]))
                    prediction = 'No'
                    if (result[0] - 0.5) > 0:
                        prediction = 'Yes'
                    result_text += unicode('Weibo ID: ' + item[0] +
                                           '\nContent: ' + item[4] +
                                           '\nTime: ' + str('%.2f' % item[2]) +
                                           '(hour)\nForward: ' + item[3] +
                                           '\nEmotion Grate: ' + str(item[1]) +
                                           '\nSuicide prediction: ' +
                                           prediction + '\n\n')

                stop_time = timeit.default_timer()
                result_text += 'Total prediction time: ' + str(
                    '%.2f' % (stop_time - start_time)) + ' seconds.\n'
                self.result_text.setText(QtCore.QString(result_text))
                self.result_text.moveCursor(QtGui.QTextCursor.End)

                # Back to root folder
                os.chdir('..')

                self.statusBar.showMessage('Prediction Complete!', 3000)
        except IOError as err:
            print('Input predict file error: ' + str(err))
            self.statusBar.showMessage(
                "Prediction Fail! Please choose a correct file.", 3000)
	def testNet(testSet, netFilename, labelHandler):
                testSummaryFilename = time.strftime("testingOutput_%d_%m_%Y_%H.csv")
		if NNWrapper.numThatActuallyHaveLabel == None:
			NNWrapper.numThatActuallyHaveLabel = {}
			NNWrapper.numThatActuallyHaveLabelCorrectlyLabeled = {}

		try:
			os.remove(testSummaryFilename)
		except:
			print "already no such file"

		testingSummaryFile = open(testSummaryFilename, "a")

		ann = libfann.neural_net()
		ann.create_from_file(netFilename)
		#ann.print_connections()

                numTested = 0
		stats = {}
		for pair in testSet:
			featureVec = pair[0]
			actualLabelVec = pair[1]
			result = ann.run(featureVec)

                        testingSummaryFile.write(str(actualLabelVec)+","+str(result)+"\n")

			numTested += 1

			actualLabels = labelHandler.getLabelsForXInNRep(pair[1])
			guessedLabels = labelHandler.labelsFromNetAnswer(result)

			for actualLabel in actualLabels:
				boxStats = stats.get(actualLabel, {})
				for guessedLabel in guessedLabels:
					boxStats[guessedLabel] = boxStats.get(guessedLabel, 0) + 1
				stats[actualLabel] = boxStats

		for key in stats:
			print key
			print "*******************"
			for label in labelHandler.labelIdsToLabels:
				count = stats[key].get(label, 0)
				print label, "\t\t\t", count

		testingSummaryFile.close()
示例#40
0
    def read(self):
        start = time.process_time()
        self.client.initProtocol(self.cfg)
        ann = libfann.neural_net()
        ann.create_from_file("./data/net_16000.net")

        proccess = processbasic.ProcessBasic.ProcessBasic(ann, self.client)
        packetReader = common.PacketReader.PacketReader(proccess)
        dataReader = common.DataReader.DataReader(self.cfg, packetReader)
        dataReader.readDataSet()

        dataReader.printFiles()
        packetReader.printSamples()
        proccess.printPackets()
        self.client.close()
        end = time.process_time()

        print("Time: " + str((end - start) * 1000) + "ms")
示例#41
0
    def __init__(self, source_image, network_shape, init_method, stats, fitness_func):
        self.source_image = source_image
        self.target_image = None
        self.network_shape = network_shape
        # Statistical chromosome initialization
        self.init_method = init_method
        self.stats = stats
        # Other
        self.fitness_func = fitness_func
        self.initial_q = metrics.q_py(source_image)

        self.trained_anns = []
        if fitness_func == 'ann':
            # Instantiate all neural nets
            ann_dir = os.path.join(
                os.path.dirname(os.path.realpath(__file__)),
                'trained_anns'
            )
            for filename in os.listdir(ann_dir):
                if filename.endswith('.net'):
                    ann_path = os.path.join(ann_dir, filename)
                    ann = libfann.neural_net()
                    ann.create_from_file(ann_path)
                    self.trained_anns.append(ann)
        else:
            slope = 0.65722219398100967
            intercept = 0.099529774137723237
            self.ideal_q_guess = slope * self.initial_q + intercept
            # print "Initial Q guess: " + str(self.ideal_q_guess)

            exp_coefs = [
                6.58953834,
                29.54967305,
                6.00895362,
                -40.3269125
            ]
            exp_p = lambda x, a, b, c, d: -a * np.exp(-b * x + c) + d
            exp = lambda x: exp_p(x, *exp_coefs)
            self.parabola_coef = exp(self.ideal_q_guess)
            s = "INITIAL Q: " + str(self.initial_q)
            s += ", IDEAL Q GUESS: " + str(self.ideal_q_guess)
            s += ", PARABOLA COEF: " + str(self.parabola_coef)
            print s
示例#42
0
 def build_pheno(self, p, pop):
     ann = libfann.neural_net()
     #ann.set_activation_function_output (libfann.SIGMOID_SYMMETRIC_STEPWISE)
     #ann.set_activation_function_hidden (libfann.SIGMOID_SYMMETRIC_STEPWISE)
     # connection_rate, (inputs, hidden, outputs)
     ann.create_sparse_array(1, (2, 2, 1))
     # get_num_layers get_num_input get_num_output
     # get_total_connections get_total_neurons
     # init_weights (self, data) print_connections, print_parameters
     # set_weight (self, from_neuron, to_neuron, weight)
     for frm in range(3):
         for to in range(2):
             v = self.get_allele(p, pop, frm * 2 + to)
             ann.set_weight(frm, to + 3, v)
             #print (frm, to + 3, ann.get_weight (frm, to + 3))
     for frm in range(3):
         ann.set_weight(frm + 3, 6, self.get_allele(p, pop, frm + 6))
         #print (frm + 3, 6, ann.get_weight (frm + 3, 6))
     return ann
	def testNet(testSet, netFilename, labelHandler):
		if NNWrapper.numThatActuallyHaveLabel == None:
			NNWrapper.numThatActuallyHaveLabel = {}
			NNWrapper.numThatActuallyHaveLabelCorrectlyLabeled = {}

		try:
			os.remove(testingSummaryFilename)
		except:
			print "already no such file"

		testingSummaryFile = open(NNWrapper.testingSummaryFilename, "a")

		ann = libfann.neural_net()
		ann.create_from_file(netFilename)
		#ann.print_connections()

		numTested = 0
		numLabeledCorrectly = 0
		for pair in testSet:
			featureVec = pair[0]
			actualLabel = labelHandler.getLabelForOneInNRep(pair[1])

			result = ann.run(featureVec)
			#print result, actualLabel
			numTested += 1
			NNWrapper.numThatActuallyHaveLabel[actualLabel] = NNWrapper.numThatActuallyHaveLabel.get(actualLabel, 0) + 1
			guessedLabel = labelHandler.closestLabel(result)
                        testingSummaryFile.write(guessedLabel+","+actualLabel+"\n")
			if actualLabel == guessedLabel:
				numLabeledCorrectly += 1
				NNWrapper.numThatActuallyHaveLabelCorrectlyLabeled[actualLabel] = NNWrapper.numThatActuallyHaveLabelCorrectlyLabeled.get(actualLabel, 0) + 1

		print "numTested", numTested
		print "numLabeledCorrectly", numLabeledCorrectly
		NNWrapper.totalTested += numTested
		NNWrapper.totalCorrect += numLabeledCorrectly
		print "totalTested", NNWrapper.totalTested
		print "totalCorrect", NNWrapper.totalCorrect
		print "percentageCorrect", float(NNWrapper.totalCorrect)/NNWrapper.totalTested
		print "*****************"
		for key in NNWrapper.numThatActuallyHaveLabel:
			print key, NNWrapper.numThatActuallyHaveLabel.get(key,0), NNWrapper.numThatActuallyHaveLabelCorrectlyLabeled.get(key,0), float(NNWrapper.numThatActuallyHaveLabelCorrectlyLabeled.get(key,0))/NNWrapper.numThatActuallyHaveLabel.get(key,0)
		testingSummaryFile.close()
示例#44
0
    def train(self,
              training_file_path,
              num_inputs,
              num_outputs,
              nn_path=DEFAULT_ANN_PATH,
              num_hid_neurons=None):
        """
        Trains an ANN from data containing in a text-based training file that is created by xml2trainingdata.py.
        :param two_hid: specifies whether to use two hidden layers or not (default not)
        :param training_file_path: path to training file
        :param nn_path: path to save ANN to
        :param num_inputs: number of input neurons
        :param num_outputs: number of output neurons
        :param num_hid_neurons: number of hidden neurons
        :return: None
        """

        # if hidden neurons are not specified, set the number to 2/3 of the sum of input and output neurons
        if num_hid_neurons is None:
            num_hid_neurons = (2 * (num_inputs * num_outputs)) / 3

        ann_tuple = (num_inputs, num_hid_neurons, num_outputs)

        # create the ANN
        ann = fann.neural_net()
        ann.create_sparse_array(CONNECTION_RATE, ann_tuple)

        # set learning style
        ann.set_learning_rate(LEARNING_RATE)

        # set activation function
        ann.set_activation_function_output(fann.SIGMOID_SYMMETRIC)

        # train the ANN on file
        ann.train_on_file(training_file_path, MAX_ITERATIONS,
                          ITERATIONS_BETWEEN_REPORTS, DESIRED_ERROR)

        # save ann to file and free memory associated with it
        ann.save(nn_path)
        ann.destroy()

        # set own ann to saved ann
        self.load_ann_from_file(nn_path)
示例#45
0
def main():
    args = parse_args()

    print "Loading data"
    
    x_train = np.load("data/x-train-pca%s_%s.npy" % (args.pca, args.type))
    x_valid = np.load("data/x-valid-pca%s_%s.npy" % (args.pca, args.type))
    y_train = np.load("data/y-train_%s.npy" % args.type)
    y_valid = np.load("data/y-valid_%s.npy" % args.type)

    print "x_train Shape", x_train.shape
    print "x_valid Shape", x_valid.shape
    print "y_train Shape", y_train.shape
    print "y_valid Shape", y_valid.shape

    print "Creating ann"

    ann = libfann.neural_net()
    ann.create_standard_array((x_train.shape[1], num_neurons_hidden, y_train.shape[1]))
    ann.set_bit_fail_limit(0.5)
    ann.set_learning_rate(learning_rate)

    print "Converting training data"
    train_data = XY_to_fann_train_data(x_train, y_train)
    print "Converting testing data"
    test_data = XY_to_fann_train_data(x_valid, y_valid)
    
    ann.train_on_data(train_data, max_epochs, 1, desired_error)

    ann.test_data(train_data)
    bit_fail = ann.get_bit_fail()
    train_err = (float(bit_fail) / (y_train.shape[0] * y_train.shape[1]))

    print "Train Error:", train_err

    ann.test_data(test_data)
    bit_fail = ann.get_bit_fail()
    valid_err = (float(bit_fail) / (y_valid.shape[0] * y_valid.shape[1]))

    print "Validation Error:", valid_err

    print "Saving ANN to %s" % args.fann_file
    ann.save("nnets/%s" % args.fann_file)
示例#46
0
 def fann_ble_test_recovered(self,
                             data,
                             test_data,
                             normalize=True,
                             savepath="./temp_save.conf"):
     if not os.path.exists(savepath):
         print "No File Included"
         return []
     net = libfann.neural_net()
     net.create_from_file(savepath)
     res = zeros(
         (test_data.mat_res.mat.shape[0], len(data.mat_res.sep_mat.keys())))
     for i, test_array in enumerate(test_data.mat_res.mat):
         if normalize:
             # test_array = -test_array / 100.0
             test_array = self.normalize(test_array, self.m_min, self.m_max)
         res[i, :] = net.run(test_array)
     self.net = net
     return res
示例#47
0
    def __init__(self):
        super().__init__()
        self.learnbuffer = []
        self.dumbtraining = False
        connection_rate = 1
        num_input = 2
        #hidden = (40,40)
        hidden = (50,)
        #hidden = (20,10,7)
        num_output = 4
        learning_rate = 0.7

        self.NN = libfann.neural_net()
        #self.NN.set_training_algorithm(libfann.TRAIN_BATCH)
        #self.NN.set_training_algorithm(libfann.TRAIN_RPROP)
        #self.NN.set_training_algorithm(libfann.TRAIN_QUICKPROP)
        self.NN.create_sparse_array(connection_rate, (num_input,)+hidden+(num_output,))
        self.NN.randomize_weights(-1,1)
        self.NN.set_learning_rate(learning_rate)
        self.NN.set_activation_function_hidden(libfann.SIGMOID_SYMMETRIC_STEPWISE)
        self.NN.set_activation_function_output(libfann.SIGMOID_SYMMETRIC_STEPWISE)
示例#48
0
def entrenar():

    connection_rate = 1
    learning_rate = 0.7
    num_input = 400
    num_hidden = 50
    num_output = 5

    desired_error = 0.0001
    max_iterations = 100000
    iterations_between_reports = 1000

    ann = libfann.neural_net()
    ann.create_sparse_array(connection_rate, (num_input, num_hidden, num_output))
    ann.set_learning_rate(learning_rate)
    ann.set_activation_function_output(libfann.SIGMOID_SYMMETRIC_STEPWISE)
    ann.set_activation_function_hidden(libfann.SIGMOID_SYMMETRIC_STEPWISE)

    ann.train_on_file("patrones.data", max_iterations, iterations_between_reports, desired_error)

    ann.save("red.net")
	def trainNetwork(dataFilename, netFilename, layerSizes, max_iterations, desired_error):
		# layerSizes should look something like this: (numInput, 200, 80, 40, 20, 10, numOutput)
		ann = libfann.neural_net()
		#ann.create_sparse_array(NNWrapper.connection_rate, (numInput, 6, 4, numOutput)) #TODO: is this what we want? # the one that works in 40 seconds 4, 10, 6, 1.  the one that trained in 30 secs was 6,6
		ann.create_sparse_array(NNWrapper.connection_rate, layerSizes)
		ann.set_learning_rate(NNWrapper.learning_rate)
		ann.set_activation_function_output(libfann.SIGMOID_SYMMETRIC_STEPWISE)
		ann.set_bit_fail_limit(.1)
		#ann.randomize_weights(0,0)

		t0 = time.clock()
		ann.train_on_file(dataFilename, max_iterations, NNWrapper.iterations_between_reports, desired_error)
		t1 = time.clock()
		seconds = t1-t0

		m, s = divmod(seconds, 60)
		h, m = divmod(m, 60)
		print "Time to train:"
		print "%d:%02d:%02d" % (h, m, s)

		ann.save(netFilename)
示例#50
0
def train_network(file):
    print('\nTraining Network from this file:', file, '\n')

    # Setup all the variables
    connection_rate = 1
    learning_rate = 0.7
    num_input = 2
    num_hidden = 4
    num_output = 1

    desired_error = 0.0001
    max_iterations = 100000
    iterations_between_reports = 1000

    ann = nn.neural_net()
    ann.create_sparse_array(connection_rate, (num_input, num_hidden, num_output))
    ann.set_learning_rate(learning_rate)
    ann.set_activation_function_output(nn.SIGMOID_SYMMETRIC_STEPWISE)

    ann.train_on_file(file, max_iterations, iterations_between_reports, desired_error)

    ann.save(file.replace('.data', '.net'))
    def predict_input_button_clicked(self):
        fake_id = '10000'
        input_text = str(self.weibo_input_text.toPlainText()).replace('\n', ' ')
        if input_text == '':
            self.statusBar.showMessage('Prediction Fail! Please enter the text.', 3000)
            return
        input_date_time = str(self.date_time_edit.dateTime().toString('yyyy.M.d HH:mm'))
        input_forward = str(self.forward_spinbox.value())

        start_time = timeit.default_timer()
        input_line = fake_id + '\t' + input_text + '\t' + input_date_time + '\t' + input_forward
        input_list = list()
        input_list.append(input_line)
        computed_list = train_prediction.process_weibo(input_list, True)

        os.chdir(os.path.abspath(os.curdir + '/neural-network'))
        ann = libfann.neural_net()
        ann.create_from_file("trained.net")

        # single_item: [0]id [1]emotion grate [2]time [3]forward [4]content
        single_item = computed_list[0]    # Only has the first one
        result = ann.run([float(single_item[1]), float(single_item[2]), float(single_item[3])])
        print('Prediction:' + str('%-18s' % result[0]))
        prediction = 'No'
        if (result[0] - 0.5) > 0:
            prediction = 'Yes'
        result_text = unicode('Content: ' + single_item[4] + '\nTime: ' + str('%.2f' % single_item[2]) +
                              '(hour)\nForward: ' + single_item[3] + '\nEmotion Grate: ' +
                              str(single_item[1]) + '\nSuicide prediction: ' + prediction + '\n\n')

        stop_time = timeit.default_timer()
        result_text += 'Total prediction time: ' + str('%.2f' % (stop_time - start_time)) + ' seconds.\n'
        self.result_text.setText(QtCore.QString(result_text))
        self.result_text.moveCursor(QtGui.QTextCursor.End)

        # Back to root folder
        os.chdir('..')

        self.statusBar.showMessage('Prediction Complete!', 3000)
示例#52
0
文件: run.py 项目: Cobra-Kao/kaggle
def run_fann(dataFile):
    with open(dataFile) as f:
        connection_rate = 1
        learning_rate = 0.7
        num_hidden = 10
        _, num_input, num_output = tuple(map(lambda d: int(d),
                                             f.readline().split()))

        desired_error = 0.0001
        max_iterations = 10000
        iterations_between_reports = 1000

        ann = libfann.neural_net()
        ann.create_sparse_array(connection_rate,
                                (num_input, num_hidden, num_output))
        ann.set_learning_rate(learning_rate)
        ann.set_activation_function_output(libfann.SIGMOID_SYMMETRIC_STEPWISE)

        ann.train_on_file(dataFile, max_iterations,
                          iterations_between_reports, desired_error)

        ann.save(os.path.splitext(dataFile)[0] + ".net")
示例#53
0
def learn(train_file):
    """
    :param train_file: filename without extensions.
    :return:
    method will create nn called <filename>.net
    and except that <filename>.data exists

    Kaikki arvot on kovakoodattu tällä hetkellä. Voisi olla vapaaehtoisia parametrejä.
    Hidden layerien määrän hallintaan pitää keksiä jokin juttu.
    """
    net_file = train_file + '.net'
    data_file = train_file + '_train.data'

    connection_rate = 1
    learning_rate = 0.5 # learning rate ei saa olla liian suuri, toisaalta liian pienellä oppiminen kestää kauan
    num_input = 2
    num_hidden = 4
    num_output = 1

    desired_error = 0.00005
    max_iterations = 100000
    iterations_between_reports = 10

    ann = libfann.neural_net()

    # Lue tiedosto
    trainindata = libfann.training_data()
    trainindata.read_train_from_file(data_file)

    # Luo verkon
    ann.create_sparse_array(connection_rate, (num_input, num_hidden, num_hidden, num_output))
    ann.set_learning_rate(learning_rate)

    ann.set_activation_function_output(libfann.SIGMOID_SYMMETRIC_STEPWISE) # Aktivointi funktio
    ann.set_training_algorithm(libfann.TRAIN_INCREMENTAL) # Oppimis algoritmi
    ann.train_on_data(trainindata, max_iterations, iterations_between_reports, desired_error)

    ann.save(net_file)
示例#54
0
 def fann_ble_test_recovered_accum(self,
                                   data,
                                   test_data,
                                   normalize=True,
                                   savepath="./temp_save.conf",
                                   accum_depth=3):
     if not os.path.exists(savepath):
         print "No File Included"
         return []
     net = libfann.neural_net()
     net.create_from_file(savepath)
     res = zeros((test_data.mat_res.mat.shape[0],
                  int(len(data.mat_res.sep_mat.keys()) / 4.0)))
     for i, test_array_miao in enumerate(test_data.mat_res.mat):
         test_array_raw = test_data.mat_res.mat[max(0, i - accum_depth):i +
                                                1, :]
         test_array = self.stack_data(test_array_raw)
         if normalize:
             test_array = self.normalize(test_array, self.m_min, self.m_max)
         # print test_array
         res[i, :] = net.run(test_array)
     self.net = net
     return res
示例#55
0
def trainANN(features, labels, connRate, hidNodes, error, binary):
    """
		Train the neural network using the given training data and 
		parameters. Returns a fully trained ANN.
	"""
    # Organize ANN parameters
    connection_rate = connRate
    num_input = 72
    num_hidden = hidNodes
    num_output = 3
    desired_error = error
    max_iterations = 100000

    # Print out two reports for every ANN
    iterations_between_reports = 50000

    # Binarize labels as it is necessary for ANN
    labels = binary.fit_transform(labels)

    # Cast numpy to python list
    annFeatures = features.tolist()
    annLabels = labels.tolist()

    # Create an ANN training data instance and set data
    training = libfann.training_data()
    training.set_train_data(annFeatures, annLabels)

    ann = libfann.neural_net()

    ann.create_sparse_array(connection_rate,
                            (num_input, num_hidden, num_output))

    # Train the ANN
    ann.train_on_data(training, max_iterations, iterations_between_reports,
                      desired_error)

    return ann
示例#56
0
    def __init__(self):
        super().__init__()
        self.learnbuffer = []
        self.dumbtraining = False
        connection_rate = 1
        num_input = 2
        #hidden = (40,40)
        hidden = (50, )
        #hidden = (20,10,7)
        num_output = 4
        learning_rate = 0.7

        self.NN = libfann.neural_net()
        #self.NN.set_training_algorithm(libfann.TRAIN_BATCH)
        #self.NN.set_training_algorithm(libfann.TRAIN_RPROP)
        #self.NN.set_training_algorithm(libfann.TRAIN_QUICKPROP)
        self.NN.create_sparse_array(connection_rate,
                                    (num_input, ) + hidden + (num_output, ))
        self.NN.randomize_weights(-1, 1)
        self.NN.set_learning_rate(learning_rate)
        self.NN.set_activation_function_hidden(
            libfann.SIGMOID_SYMMETRIC_STEPWISE)
        self.NN.set_activation_function_output(
            libfann.SIGMOID_SYMMETRIC_STEPWISE)
示例#57
0
def train(captchas_dir):
    NUM_INPUT = CH_WIDTH * CH_HEIGHT
    NUM_NEURONS_HIDDEN = NUM_INPUT // 3
    NUM_OUTPUT = 10
    ann = libfann.neural_net()
    ann.create_standard_array((NUM_INPUT, NUM_NEURONS_HIDDEN, NUM_OUTPUT))
    # ann.set_activation_function_hidden(libfann.SIGMOID)
    # ann.set_activation_function_output(libfann.SIGMOID)
    # ann.randomize_weights(0.0, 0.0)

    start = time.time()
    succeed = 0
    captchas_dir = os.path.abspath(captchas_dir)
    captchas = os.listdir(captchas_dir)
    report()
    for i, name in enumerate(captchas):
        answer = re.match(r'(\d{6})\.png$', name)
        if not answer:
            continue
        answer = answer.group(1)
        fpath = os.path.join(captchas_dir, name)
        try:
            img = get_image(fpath)
            ch_imgs = segment(img)
            for ch_img, digit in zip(ch_imgs, answer):
                ann.train(get_ch_data(ch_img), make_ann_output(digit))
        except Exception as exc:
            report('Error occured while processing {}: {}'.format(name, exc))
            report()
        else:
            succeed += 1
            report('{}/{}'.format(i + 1, len(captchas)), progress=True)
    runtime = time.time() - start
    report('Done training on {}/{} captchas in {:.3f} seconds'.format(
        succeed, len(captchas), runtime))
    return ann
示例#58
0
def test_prediction(test_list):
    os.chdir(os.path.abspath(os.curdir + '/neural-network'))
    ann = libfann.neural_net()
    ann.create_from_file("trained.net")
    correct_count = 0

    # item: [0]id [1]emotion grate [2]time [3]forward [4]suicide or not
    for item in test_list:
        result = ann.run([float(item[1]), float(item[2]), float(item[3])])
        print('Prediction:' + str('%-18s' % result[0]) + 'Suicide:' + item[4])

        prediction = 0
        if (result[0] - 0.5) > 0:
            prediction = 1
        if int(item[4]) == prediction:
            correct_count += 1

    accuracy = round(float(correct_count) / len(test_list) * 100, 2)
    print('Results: Correct number is ' + str(correct_count) + '. Model accuracy is ' + str('%.2f' % accuracy) + '%.')

    # Back to root folder
    os.chdir('..')

    return accuracy