示例#1
0
def test(test_loader, target_net):
    box_num = np.array([0, 0])
    correct_cnt, total_cnt = np.array([0, 0]), np.array([0, 0])
    print('========== Testing =======')
    target_net.eval()

    batch_time = network.AverageMeter()
    end = time.time()
    for i, (im_data, im_info, gt_objects, gt_relationships, gt_regions) in enumerate(test_loader):
        correct_cnt_t, total_cnt_t = np.array([0, 0]), np.array([0, 0])
        # Forward pass
        object_rois, region_rois = target_net(im_data, im_info.numpy(), gt_objects.numpy(), gt_regions.numpy())[1:]
        box_num[0] += object_rois.size(0)
        box_num[1] += region_rois.size(0)
        correct_cnt_t[0], total_cnt_t[0] = check_recall(object_rois, gt_objects[0].numpy(), 50)
        correct_cnt_t[1], total_cnt_t[1] = check_recall(region_rois, gt_regions[0].numpy(), 50)
        correct_cnt += correct_cnt_t
        total_cnt += total_cnt_t
        batch_time.update(time.time() - end)
        end = time.time()
        if (i + 1) % 100 == 0 and i > 0:
            print('[{0}/{10}]  Time: {1:2.3f}s/img).'
                  '\t[object] Avg: {2:2.2f} Boxes/im, Top-50 recall: {3:2.3f} ({4:d}/{5:d})'
                  '\t[region] Avg: {6:2.2f} Boxes/im, Top-50 recall: {7:2.3f} ({8:d}/{9:d})'.format(
                      i + 1, batch_time.avg,
                      box_num[0] / float(i + 1), correct_cnt[0] / float(total_cnt[0]) * 100, correct_cnt[0], total_cnt[0],
                      box_num[1] / float(i + 1), correct_cnt[1] / float(total_cnt[1]) * 100, correct_cnt[1], total_cnt[1],
                      len(test_loader)))

    recall = correct_cnt / total_cnt.astype(np.float)
    print('====== Done Testing ====')
    return recall
示例#2
0
def test(test_loader, target_net):

	box_num, correct_cnt, total_cnt = 0, 0, 0
	print '========== Testing ======='
	target_net.eval()

	batch_time = network.AverageMeter()
	end = time.time()
	for i, (im_data, im_info, gt_boxes, gt_relationship) in enumerate(test_loader):
		# Forward pass
		features, object_rois, scores = target_net.rpn(im_data, im_info.numpy(), gt_boxes.numpy()[0])
		box_num += object_rois.size(0)
		correct_cnt_t, total_cnt_t = check_recall(object_rois, gt_boxes.numpy()[0], 64)
		correct_cnt += correct_cnt_t
		total_cnt += total_cnt_t
		batch_time.update(time.time()-end)
		end = time.time()
		if (i+1)%100 == 0 and i > 0:
			print('[{0}/{6}]  Time: {1:2.3f}s/img).'
			      '\t[object] Avg: {2:2.2f} Boxes/im, Top-64 recall: {3:2.3f} ({4:d}/{5:d})'.format(
				i+1, batch_time.avg, box_num/float(i+1), correct_cnt/float(total_cnt)*100,
				correct_cnt, total_cnt, len(test_loader)))

	recall = correct_cnt/float(total_cnt)
	print '====== Done Testing ===='
	return recall
示例#3
0
def evaluate(test_loader,
             target_net,
             object_classes,
             score_thresh=0.00,
             overlap_thresh=0.5,
             nms_thresh=0.5):
    print(object_classes)
    box_num, correct_cnt, total_cnt = 0, 0, 0
    # ipdb.set_trace()
    # store cls_scores, cls_tp, cls_gt_num of each cls and every image
    all_cls_gt_num = [0] * (len(object_classes) - 1)
    all_cls_scores = [np.array([])] * (len(object_classes) - 1)
    all_cls_tp = [np.array([])] * (len(object_classes) - 1)

    print('========== Evaluate =======')
    target_net.eval()

    batch_time = network.AverageMeter()
    end = time.time()
    for i, (im_data, im_info, gt_boxes,
            gt_relationships) in enumerate(test_loader):
        # get every class scores, tf array and gt number
        classes_scores, classes_tf, classes_gt_num, object_rois = \
            image_eval(target_net, im_data, im_info, gt_boxes.numpy()[0], object_classes,
                       max_per_image=100, score_thresh=score_thresh, overlap_thresh=overlap_thresh, nms_thresh=nms_thresh)

        for j in range(len(object_classes) - 1):
            all_cls_scores[j] = np.append(all_cls_scores[j], classes_scores[j])
            all_cls_tp[j] = np.append(all_cls_tp[j], classes_tf[j])
            all_cls_gt_num[j] += classes_gt_num[j]

        box_num += object_rois.size(0)
        correct_cnt_t, total_cnt_t = check_recall(object_rois,
                                                  gt_boxes.numpy()[0],
                                                  64,
                                                  thresh=0.5)
        correct_cnt += correct_cnt_t
        total_cnt += total_cnt_t
        batch_time.update(time.time() - end)
        end = time.time()
        if (i + 1) % args.log_interval == 0:
            print(
                '[{0}/{6}]  Time: {1:2.3f}s/img).'
                '\t[object] Avg: {2:2.2f} Boxes/im, Top-64 recall: {3:2.3f} ({4:d}/{5:d})'
                .format(i + 1, batch_time.avg, box_num / float(i + 1),
                        correct_cnt / float(total_cnt) * 100, correct_cnt,
                        total_cnt, len(test_loader)))

    all_aps = []
    for k, cls in enumerate(object_classes[1:]):
        # sort scores of all images
        cls_ap = cls_eval(all_cls_scores[k], all_cls_tp[k], all_cls_gt_num[k])
        all_aps += [cls_ap]
        print('AP for {} = {:.4f}'.format(cls, cls_ap))

        mean_ap = np.mean(all_aps)
    print('Mean AP = {:.4f}'.format(mean_ap))

    print('====== Done Testing ====')
    return mean_ap
示例#4
0
def test(test_loader, target_net):
    box_num = np.array([0, 0])
    correct_cnt, total_cnt = np.array([0, 0]), np.array([0, 0])
    print '========== Testing ======='
    target_net.eval()

    batch_time = network.AverageMeter()
    cover_cnt = 0
    cnt_gt = 0
    object_cnt = 0

    num = 0
    end = time.time()
    for i, (im_data, im_info, gt_objects, gt_relationships, gt_boxes_relationship) in enumerate(test_loader):
        # num += 1
        # if num > 320:
        #     break
        correct_cnt_t, total_cnt_t = np.array([0, 0]), np.array([0, 0])
        # Forward pass

        object_rois, relationship_rois = target_net(im_data, im_info.numpy(), gt_objects.numpy(),
                                                    gt_boxes_relationship.numpy())[1:]
        # all_rois = object_rois.data.cpu().numpy()
        # zeros = np.zeros((gt_objects.numpy().shape[1], 1), dtype=gt_objects.numpy().dtype)
        # # add gt_obj to predict_rois
        # all_rois = np.vstack(
        #     (all_rois, np.hstack((zeros, gt_objects.numpy()[0][:, :4])))
        # )
        # object_rois = network.np_to_variable(all_rois, is_cuda=True)
        # TODO: add rules
        # img_shape = im_info[0][:2]
        # object_rois = object_rois[:, 1:5]
        # relationship_rois = enlarge_rois_clip(relationship_rois[:, 1:5], 1.2, img_shape)
        # obj_in_predicate(object_rois, relationship_rois, 9)
        object_cnt_t, cover_cnt_t, cnt_gt_t = check_msdn_rpn(
            object_rois.data.cpu().numpy(), gt_objects.numpy()[0], gt_relationships.numpy()[0])
        object_cnt += object_cnt_t
        cover_cnt += cover_cnt_t
        cnt_gt += cnt_gt_t
        # gt_num = gt_boxes_relationship[0].size()[0]
        box_num[0] += object_rois.size(0)
        box_num[1] += relationship_rois.size(0)
        correct_cnt_t[0], total_cnt_t[0] = check_recall(object_rois, gt_objects[0].numpy(), object_rois.size(0), thres=0.5)

        correct_cnt_t[1], total_cnt_t[1] = check_recall(relationship_rois, gt_boxes_relationship[0].numpy(), 64, thres=0.5)
        correct_cnt += correct_cnt_t
        total_cnt += total_cnt_t
        batch_time.update(time.time()-end)
        end = time.time()
        if (i+1)%100 == 0 and i > 0:
            print('[{0}/{10}]  Time: {1:2.3f}s/img).'
                  '\t[object] Avg: {2:2.2f} Boxes/im, Top-2000 recall: {3:2.3f} ({4:d}/{5:d})'
                  '\t[relationship] Avg: {6:2.2f} Boxes/im, Top-500 recall: {7:2.3f} ({8:d}/{9:d})'.format(
                i+1, batch_time.avg,
                box_num[0]/float(i+1), correct_cnt[0]/float(total_cnt[0])*100, correct_cnt[0], total_cnt[0],
                box_num[1]/float(i+1), correct_cnt[1]/float(total_cnt[1])*100, correct_cnt[1], total_cnt[1],
                len(test_loader)))
            print('fg object number:{0:d}'
                  '\tcover number:{1:d}'
                  '\tcover & sub & obj vs gt_relationship_boxes average recall: {2:.3f}').format(
                object_cnt/i, cover_cnt / i,
                cover_cnt / float(cnt_gt) * 100)
            # print('\n')
            
    recall = correct_cnt/total_cnt.astype(np.float)
    print '====== Done Testing ===='
    return recall
示例#5
0
def test(test_loader, target_net):
    box_num = np.array([0, 0])
    correct_cnt, total_cnt = np.array([0, 0]), np.array([0, 0])
    print '========== Testing ======='
    target_net.eval()

    batch_time = network.AverageMeter()
    # cover_cnt = 0
    #
    # cover_gt_cnt = 0
    # fg_cover = 0
    # fg_object = 0
    # cover_gt = 0
    # object_gt = 0
    # num = 0
    end = time.time()
    for i, (im_data, im_info, gt_objects, gt_relationships,
            gt_boxes_relationship) in enumerate(test_loader):
        # num += 1
        # if num > 320:
        # 	break
        correct_cnt_t, total_cnt_t = np.array([0, 0]), np.array([0, 0])
        # Forward pass

        object_rois, relationship_rois, scores_object, scores_relationship = target_net(
            im_data, im_info.numpy(),
            gt_objects.numpy()[0],
            gt_boxes_relationship.numpy()[0])[1:]

        # TODO: add rules

        # subject_id, object_id, relationship_cover = compare_rel_rois(
        # 	object_rois, relationship_rois, scores_object, scores_relationship, topN_covers=2048, thresh=0.5)
        #
        # cover_gt_num = check_recall(relationship_cover, gt_boxes_relationship[0].numpy(),
        # 							 top_N=relationship_cover.size()[0])
        # cover_cnt += cover_gt_num[0]
        # cover_obj_check = check_obj_rel_recall(gt_objects[0].numpy(), gt_relationships[0].numpy(),
        # 									 gt_boxes_relationship[0].numpy(), relationship_cover,
        # 									 subject_id.cpu().numpy(), object_id.cpu().numpy(),
        # 									 object_rois, cover_thresh=0.4, object_thresh=0.4, log=num)
        # cover_gt_cnt += cover_obj_check[0]
        # fg_cover += cover_obj_check[1]
        # fg_object += cover_obj_check[2]
        # cover_gt += cover_obj_check[3]
        # object_gt += cover_obj_check[4]
        #
        box_num[0] += object_rois.size(0)
        box_num[1] += relationship_rois.size(0)
        correct_cnt_t[0], total_cnt_t[0] = check_recall(object_rois,
                                                        gt_objects[0].numpy(),
                                                        256,
                                                        thresh=0.5)
        correct_cnt_t[1], total_cnt_t[1] = check_recall(
            relationship_rois,
            gt_boxes_relationship[0].numpy(),
            256,
            thresh=0.5)
        correct_cnt += correct_cnt_t
        total_cnt += total_cnt_t
        batch_time.update(time.time() - end)
        end = time.time()
        if (i + 1) % 100 == 0 and i > 0:
            print(
                '[{0}/{10}]  Time: {1:2.3f}s/img).'
                '\t[object] Avg: {2:2.2f} Boxes/im, Top-256 recall: {3:2.3f} ({4:d}/{5:d})'
                '\t[relationship] Avg: {6:2.2f} Boxes/im, Top-256 recall: {7:2.3f} ({8:d}/{9:d})'
                .format(i + 1, batch_time.avg, box_num[0] / float(i + 1),
                        correct_cnt[0] / float(total_cnt[0]) * 100,
                        correct_cnt[0], total_cnt[0],
                        box_num[1] / float(i + 1),
                        correct_cnt[1] / float(total_cnt[1]) * 100,
                        correct_cnt[1], total_cnt[1], len(test_loader)))
            # print('relationship_cover number: {0}'
            # 	  '\tcover vs gt_relationship_boxes average recall: {1:.3f}'
            # 	  '\tcover & sub & obj vs gt_relationship_boxes average recall: {2:.3f}').format(
            # 	relationship_cover.size()[0], cover_cnt/float(total_cnt[1])*100, cover_gt_cnt/float(total_cnt[1])*100)
            # print('average fg_cover: {0:.2f}'
            # 	  '\taverage fg_object: {1:.2f}'
            # 	  '\taverage cover_gt: {2:.2f}'
            # 	  '\taverage object_gt: {3:.2f}').format(
            # 	fg_cover / float(i), fg_object / float(i), cover_gt / float(i), object_gt / float(i))

    recall = correct_cnt / total_cnt.astype(np.float)
    print '====== Done Testing ===='
    return recall
示例#6
0
def test(test_loader, net, top_Ns, object_classes):

    global args

    print '========== Testing ========'
    net.eval()
    # For efficiency inference
    # net.use_region_reg = True

    rel_cnt = 0.
    rel_cnt_correct = np.zeros(len(top_Ns))
    box_num, obj_correct_cnt, obj_total_cnt = 0, 0, 0
    batch_time = network.AverageMeter()
    end = time.time()

    all_cls_gt_num = [0] * (len(object_classes) - 1)
    all_cls_scores = [np.array([])] * (len(object_classes) - 1)
    all_cls_tp = [np.array([])] * (len(object_classes) - 1)

    for i, (im_data, im_info, gt_objects,
            gt_relationships) in enumerate(test_loader):
        # Forward pass
        # pdb.set_trace()
        total_cnt_t, rel_cnt_correct_t, object_rois, classes_scores, classes_tf, classes_gt_num = net.evaluate(
            im_data,
            im_info,
            gt_objects.numpy()[0],
            gt_relationships.numpy()[0],
            top_Ns=top_Ns,
            use_gt_boxes=args.use_gt_boxes,
            nms=False,
            nms_thresh=0.4,
            thresh=0.5,
            use_rpn_scores=args.use_rpn_scores)
        box_num += object_rois.size(0)
        obj_correct_cnt_t, obj_total_cnt_t = check_recall(
            object_rois / im_info[0][2],
            gt_objects.numpy()[0], 64)
        obj_correct_cnt += obj_correct_cnt_t
        obj_total_cnt += obj_total_cnt_t
        rel_cnt += total_cnt_t
        rel_cnt_correct += rel_cnt_correct_t

        for j in range(len(object_classes) - 1):
            all_cls_scores[j] = np.append(all_cls_scores[j], classes_scores[j])
            all_cls_tp[j] = np.append(all_cls_tp[j], classes_tf[j])
            all_cls_gt_num[j] += classes_gt_num[j]

        batch_time.update(time.time() - end)
        end = time.time()
        if (i + 1) % args.log_interval == 0 and i > 0:
            print(
                'Time: {0:2.3f}s/img.'
                '\t[object] Avg: {1:2.2f} Boxes/im, Top-64 recall: {2:2.3f} ({3:d}/{4:d})'
                .format(batch_time.avg, box_num / float(i + 1),
                        obj_correct_cnt / float(obj_total_cnt) * 100,
                        obj_correct_cnt, obj_total_cnt))
            for idx, top_N in enumerate(top_Ns):
                print '[%d/%d][Evaluation] Top-%d Recall: %2.3f%%' % (
                    i + 1, len(test_loader), top_N,
                    rel_cnt_correct[idx] / float(rel_cnt) * 100)

    all_aps = []
    for k, cls in enumerate(object_classes[1:]):
        # sort scores of all images
        cls_ap = cls_eval(all_cls_scores[k], all_cls_tp[k], all_cls_gt_num[k])
        all_aps += [cls_ap]
        print('AP for {} = {:.4f}'.format(cls, cls_ap))
    print('Mean AP = {:.4f}'.format(np.mean(all_aps)))

    recall = rel_cnt_correct / rel_cnt
    print '====== Done Testing ===='

    return recall
示例#7
0
def test(test_loader, target_net):
    box_num = np.array([0, 0])
    correct_cnt, total_cnt = np.array([0, 0]), np.array([0, 0])
    print '========== Testing ======='
    target_net.eval()

    batch_time = network.AverageMeter()
    cover_cnt = 0

    cover_gt_cnt = 0
    fg_cover = 0
    fg_object = 0
    cover_gt = 0
    object_gt = 0
    num = 0
    end = time.time()
    for i, (im_data, im_info, gt_objects, gt_relationships,
            gt_boxes_relationship) in enumerate(test_loader):
        # num += 1
        # if num > 20:
        # 	break
        correct_cnt_t, total_cnt_t = np.array([0, 0]), np.array([0, 0])
        # Forward pass

        object_rois, relationship_rois, scores_object, scores_relationship = target_net(
            im_data, im_info.numpy(), gt_objects.numpy(),
            gt_boxes_relationship.numpy())[1:]

        # TODO: add rules
        # img_shape = im_info[0][:2]
        # object_rois = object_rois[:, 1:5]
        # relationship_rois = enlarge_rois_clip(relationship_rois[:, 1:5], 1.2, img_shape)
        # obj_in_predicate(object_rois, relationship_rois, 9)

        # subject_id, object_id, relationship_cover: Variable
        # ipdb.set_trace()
        subject_id, object_id, relationship_cover = compare_rel_rois(
            object_rois.data.cpu().numpy(),
            relationship_rois.data.cpu().numpy(),
            scores_object,
            scores_relationship,
            topN_obj=object_rois.size(0),
            topN_rel=relationship_rois.size(0),
            obj_rel_thresh=0.6,
            max_objects=18,
            topN_covers=2016,
            cover_thresh=0.6)

        cover_obj_check = check_obj_rel_recall(
            gt_objects.numpy()[0],
            gt_relationships.numpy()[0],
            gt_boxes_relationship.numpy()[0],
            relationship_cover,
            object_rois.data.cpu().numpy(),
            # all_rois_phrase, all_rois,
            subject_id,
            object_id,
            # subject_inds, object_inds,
            cover_thresh=0.5,
            object_thresh=0.5,
            log=False)
        cover_gt_cnt += cover_obj_check[0]
        fg_cover += cover_obj_check[1]
        fg_object += cover_obj_check[2]
        cover_gt += cover_obj_check[3]
        object_gt += cover_obj_check[4]

        # print('relationship_cover size', relationship_cover.size())
        # unique_obj = np.unique(np.append(subject_id.cpu().numpy(), object_id.cpu().numpy()))
        # print('max', np.max(unique_obj))
        # print(unique_obj.size)

        cover_gt_num = check_recall(relationship_rois,
                                    gt_boxes_relationship.numpy()[0],
                                    top_N=relationship_rois.size(0),
                                    thresh=0.5)
        cover_cnt += cover_gt_num[0]
        # all_rois = object_rois.data.cpu().numpy()
        # zeros = np.zeros((gt_objects.numpy().shape[1], 1), dtype=gt_objects.numpy().dtype)
        # # add gt_obj to predict_rois
        # all_rois = np.vstack(
        # 	(all_rois, np.hstack((zeros, gt_objects.numpy()[0][:, :4])))
        # )
        # all_rois_phrase = relationship_rois.data.cpu().numpy()
        # zeros = np.zeros((gt_boxes_relationship.numpy().shape[1], 1), dtype=gt_boxes_relationship.numpy()[0].dtype)
        # all_rois_phrase = np.vstack(
        # 	(all_rois_phrase, np.hstack((zeros, gt_boxes_relationship.numpy()[0][:, :4])))
        # )
        # scores_object = np.append(scores_object, np.ones(gt_objects.size()[1], dtype=scores_object.dtype))
        # scores_relationship = np.append(scores_relationship, np.ones(gt_boxes_relationship.size()[1], dtype=scores_relationship.dtype))
        # subject_id, object_id, relationship_cover = compare_rel_rois(
        # 	all_rois, all_rois_phrase, scores_object, scores_relationship,
        # 	topN_obj=all_rois.shape[0], topN_rel=all_rois_phrase.shape[0],
        # 	obj_rel_thresh=0.6, max_objects=18, topN_covers=2048, cover_thresh=0.6)

        # all_rois_phrase_all = relationship_cover
        # zeros = np.zeros((gt_boxes_relationship.numpy().shape[1], 1), dtype=gt_boxes_relationship.numpy()[0].dtype)
        # all_rois_phrase_all = np.vstack(
        # 	(all_rois_phrase_all, np.hstack((zeros, gt_boxes_relationship.numpy()[0][:, :4])))
        # )
        # gt_rel_sub_idx, gt_rel_obj_idx = np.where(gt_relationships.numpy()[0] > 0)
        # gt_rel_sub_idx, gt_rel_obj_idx = gt_rel_sub_idx + object_rois.size()[0], gt_rel_obj_idx + object_rois.size()[0]
        # subject_inds = np.append(subject_id, gt_rel_sub_idx)
        # object_inds = np.append(object_id, gt_rel_obj_idx)

        # test
        # object_labels, object_rois_pro, bbox_targets_object, bbox_inside_weights_object, bbox_outside_weights_object, \
        # region_labels, region_rois_pro, bbox_targets_region, bbox_inside_weights_region, bbox_outside_weights_region, \
        # mat_object = proposal_target_layer(object_rois.data.cpu().numpy(), relationship_cover.data.cpu().numpy(),
        # 								   subject_id.cpu().numpy(), object_id.cpu().numpy(),
        # 								   gt_objects.numpy()[0], gt_relationships.numpy()[0], gt_boxes_relationship.numpy()[0],
        # 								   n_classes_obj=151, n_classes_pred=51, is_training=False, graph_generation=False)
        # print('object_labels', object_labels[:20])
        # print(object_labels.shape)
        # print('bbox_targets_object', bbox_targets_object[:10, :60])
        # print(bbox_targets_object.shape)
        # print('bbox_inside_weights_object', bbox_inside_weights_object[:10, :60])
        # print(bbox_inside_weights_object.shape)
        # print('region \n')
        # print('region_labels', region_labels[:20])
        # print(region_labels.shape)
        # print('region_rois_pro', region_rois_pro[:10])
        # print(region_rois_pro.shape)
        # print('bbox_targets_region', bbox_targets_region[:10])
        # print(bbox_targets_region.shape)
        # print('bbox_inside_weights_region', bbox_inside_weights_region[:10, :60])
        # print(bbox_inside_weights_region.shape)
        # print('object_rois_pro', object_rois_pro[:10])
        # print('object_rois_pro shape', object_rois_pro.shape)
        # print('region_rois_pro', region_rois_pro[:10])
        # print(region_rois_pro.shape)
        # print('mat \n')
        # print(mat_object[:32, 0, :32])
        # print(mat_object.shape)
        # print(mat_object[:32, 0, :32].T)

        box_num[0] += object_rois.size(0)
        box_num[1] += relationship_rois.size(0)
        correct_cnt_t[0], total_cnt_t[0] = check_recall(object_rois,
                                                        gt_objects.numpy()[0],
                                                        200,
                                                        thresh=0.5)
        correct_cnt_t[1], total_cnt_t[1] = check_recall(
            relationship_rois,
            gt_boxes_relationship.numpy()[0],
            128,
            thresh=0.6)
        correct_cnt += correct_cnt_t
        total_cnt += total_cnt_t
        batch_time.update(time.time() - end)
        end = time.time()
        if (i + 1) % 100 == 0 and i > 0:
            print(
                '([{0}/{10}]  Time: {1:2.3f}s/img).\n'
                '[object] Avg: {2:2.2f} Boxes/im, Top-256 recall: {3:2.3f} ({4:d}/{5:d})\n'
                '[relationship] Avg: {6:2.2f} Boxes/im, Top-128 recall: {7:2.3f} ({8:d}/{9:d})'
                .format(i + 1, batch_time.avg, box_num[0] / float(i + 1),
                        correct_cnt[0] / float(total_cnt[0]) * 100,
                        correct_cnt[0], total_cnt[0],
                        box_num[1] / float(i + 1),
                        correct_cnt[1] / float(total_cnt[1]) * 100,
                        correct_cnt[1], total_cnt[1], len(test_loader)))
            print(
                '[relationship_cover number]: {0}\n'
                '[cover vs gt_relationship_boxes average recall]: {1:.3f}\n'
                '[cover & sub & obj vs gt_relationship_boxes average recall]: {2:.3f}'
            ).format(relationship_cover.shape[0],
                     cover_cnt / float(total_cnt[1]) * 100,
                     cover_gt_cnt / float(total_cnt[1]) * 100)
            print('average fg_cover: {0:.2f}'
                  '\taverage fg_object: {1:.2f}'
                  '\taverage cover_gt: {2:.2f}'
                  '\taverage object_gt: {3:.2f}').format(
                      fg_cover / float(i), fg_object / float(i),
                      cover_gt / float(i), object_gt / float(i))

    recall = correct_cnt / total_cnt.astype(np.float)
    print '====== Done Testing ===='
    return recall