def build_args(): parser = ArgumentParser() # basic args path_config = pathlib.Path("../../fastmri_dirs.yaml") backend = "ddp" num_gpus = 2 if backend == "ddp" else 1 batch_size = 1 # set defaults based on optional directory config data_path = fetch_dir("knee_path", path_config) default_root_dir = fetch_dir("log_path", path_config) / "varnet" / "varnet_demo" # client arguments parser.add_argument( "--mode", default="train", choices=("train", "test"), type=str, help="Operation mode", ) # data transform params parser.add_argument( "--mask_type", choices=("random", "equispaced"), default="equispaced", type=str, help="Type of k-space mask", ) parser.add_argument( "--center_fractions", nargs="+", default=[0.08], type=float, help="Number of center lines to use in mask", ) parser.add_argument( "--accelerations", nargs="+", default=[4], type=int, help="Acceleration rates to use for masks", ) # data config parser = FastMriDataModule.add_data_specific_args(parser) parser.set_defaults( data_path=data_path, # path to fastMRI data mask_type="equispaced", # VarNet uses equispaced mask challenge="multicoil", # only multicoil implemented for VarNet batch_size=batch_size, # number of samples per batch test_path=None, # path for test split, overwrites data_path ) # module config parser = VarNetModule.add_model_specific_args(parser) parser.set_defaults( num_cascades=8, # number of unrolled iterations pools=4, # number of pooling layers for U-Net chans=18, # number of top-level channels for U-Net sens_pools=4, # number of pooling layers for sense est. U-Net sens_chans=8, # number of top-level channels for sense est. U-Net lr=0.001, # Adam learning rate lr_step_size=40, # epoch at which to decrease learning rate lr_gamma=0.1, # extent to which to decrease learning rate weight_decay=0.0, # weight regularization strength ) # trainer config parser = pl.Trainer.add_argparse_args(parser) parser.set_defaults( gpus=num_gpus, # number of gpus to use replace_sampler_ddp= False, # this is necessary for volume dispatch during val accelerator=backend, # what distributed version to use seed=42, # random seed deterministic=True, # makes things slower, but deterministic default_root_dir=default_root_dir, # directory for logs and checkpoints max_epochs=50, # max number of epochs ) args = parser.parse_args() # configure checkpointing in checkpoint_dir checkpoint_dir = args.default_root_dir / "checkpoints" if not checkpoint_dir.exists(): checkpoint_dir.mkdir(parents=True) args.checkpoint_callback = pl.callbacks.ModelCheckpoint( filepath=args.default_root_dir / "checkpoints", save_top_k=True, verbose=True, monitor="validation_loss", mode="min", prefix="", ) # set default checkpoint if one exists in our checkpoint directory if args.resume_from_checkpoint is None: ckpt_list = sorted(checkpoint_dir.glob("*.ckpt"), key=os.path.getmtime) if ckpt_list: args.resume_from_checkpoint = str(ckpt_list[-1]) return args
def build_varnet_args(data_path, logdir, backend): parser = ArgumentParser() num_gpus = 0 batch_size = 1 # data transform params parser.add_argument( "--mask_type", choices=("random", "equispaced"), default="equispaced", type=str, help="Type of k-space mask", ) parser.add_argument( "--center_fractions", nargs="+", default=[0.08], type=float, help="Number of center lines to use in mask", ) parser.add_argument( "--accelerations", nargs="+", default=[4], type=int, help="Acceleration rates to use for masks", ) # data config parser = FastMriDataModule.add_data_specific_args(parser) parser.set_defaults( data_path=data_path, mask_type="equispaced", challenge="multicoil", batch_size=batch_size, ) # module config parser = VarNetModule.add_model_specific_args(parser) parser.set_defaults( num_cascades=4, pools=2, chans=8, sens_pools=2, sens_chans=4, lr=0.001, lr_step_size=40, lr_gamma=0.1, weight_decay=0.0, ) # trainer config parser = Trainer.add_argparse_args(parser) parser.set_defaults( gpus=num_gpus, default_root_dir=logdir, replace_sampler_ddp=(backend != "ddp"), accelerator=backend, ) parser.add_argument("--mode", default="train", type=str) args = parser.parse_args([]) return args
def build_args(): parser = ArgumentParser() # basic args path_config = pathlib.Path("../../fastmri_dirs.yaml") batch_size = 1 if backend == "ddp" else num_gpus # set defaults based on optional directory config data_path = fetch_dir("knee_path", path_config) default_root_dir = fetch_dir("log_path", path_config) / "nnret" / "nnret_demo" # client arguments parser.add_argument( "--mode", default="train", choices=("train", "test"), type=str, help="Operation mode", ) # data transform params parser.add_argument( "--mask_type", choices=("random", "equispaced"), default="random", type=str, help="Type of k-space mask", ) parser.add_argument( "--center_fractions", nargs="+", default=[0.08], type=float, help="Number of center lines to use in mask", ) parser.add_argument( "--accelerations", nargs="+", default=[4], type=int, help="Acceleration rates to use for masks", ) # data config with path to fastMRI data and batch size parser = FastMriDataModule.add_data_specific_args(parser) parser.set_defaults(data_path=data_path, batch_size=batch_size, test_path=None) # module config parser = NnRetModule.add_model_specific_args(parser) parser.set_defaults( in_chans=1, # number of input channels to NNRET out_chans=1, # number of output chanenls to NNRET chans=32, # number of top-level NNRET channels num_pool_layers=4, # number of NNRET pooling layers drop_prob=0.0, # dropout probability lr=0.001, # RMSProp learning rate lr_step_size=40, # epoch at which to decrease learning rate lr_gamma=0.1, # extent to which to decrease learning rate weight_decay=0.0, # weight decay regularization strength ) # trainer config parser = pl.Trainer.add_argparse_args(parser) parser.set_defaults( gpus=num_gpus, # number of gpus to use replace_sampler_ddp=False, # this is necessary for volume dispatch during val accelerator=backend, # what distributed version to use seed=42, # random seed deterministic=True, # makes things slower, but deterministic default_root_dir=default_root_dir, # directory for logs and checkpoints max_epochs=1, # max number of epochs ) args = parser.parse_args() return args
def build_args(): parser = ArgumentParser() # basic args path_config = pathlib.Path("../../fastmri_dirs.yaml") num_gpus = 0 backend = "ddp_cpu" batch_size = 1 if backend == "ddp_cpu" else num_gpus # set defaults based on optional directory config data_path = fetch_dir("knee_path", path_config) default_root_dir = fetch_dir("log_path", path_config) / "unet" / "unet_demo" # client arguments parser.add_argument( "--mode", default="train", choices=("train", "test"), type=str, help="Operation mode", ) # data transform params parser.add_argument( "--mask_type", choices=("random", "equispaced"), default="random", type=str, help="Type of k-space mask", ) parser.add_argument( "--center_fractions", nargs="+", default=[0.08], type=float, help="Number of center lines to use in mask", ) parser.add_argument( "--proportion", default=0.1, type=float, help="Proportion of label data", ) parser.add_argument( "--accelerations", nargs="+", default=[4], type=int, help="Acceleration rates to use for masks", ) # data config with path to fastMRI data and batch size parser = FastMriDataModule.add_data_specific_args(parser) parser.set_defaults(data_path=data_path, batch_size=batch_size, test_path=None) # module config parser = UnetModule.add_model_specific_args(parser) parser.set_defaults( in_chans=1, # number of input channels to U-Net out_chans=1, # number of output chanenls to U-Net chans=32, # number of top-level U-Net channels num_pool_layers=4, # number of U-Net pooling layers drop_prob=0.0, # dropout probability lr=0.001, # RMSProp learning rate lr_step_size=40, # epoch at which to decrease learning rate lr_gamma=0.1, # extent to which to decrease learning rate weight_decay=0.0, # weight decay regularization strength ) # trainer config parser = pl.Trainer.add_argparse_args(parser) parser.set_defaults( gpus=num_gpus, # number of gpus to use replace_sampler_ddp= False, # this is necessary for volume dispatch during val accelerator=backend, # what distributed version to use seed=42, # random seed deterministic=True, # makes things slower, but deterministic default_root_dir=default_root_dir, # directory for logs and checkpoints max_epochs=50, # max number of epochs ) args = parser.parse_args() # configure checkpointing in checkpoint_dir checkpoint_dir = args.default_root_dir / "checkpoints" if not checkpoint_dir.exists(): checkpoint_dir.mkdir(parents=True) args.checkpoint_callback = pl.callbacks.ModelCheckpoint( dirpath=args.default_root_dir / "checkpoints", save_top_k=True, verbose=True, monitor="validation_loss", mode="min", prefix="", ) # set default checkpoint if one exists in our checkpoint directory if args.resume_from_checkpoint is None: ckpt_list = sorted(checkpoint_dir.glob("*.ckpt"), key=os.path.getmtime) if ckpt_list: args.resume_from_checkpoint = str(ckpt_list[-1]) return args
def build_args(): parser = ArgumentParser() batch_size = 1 # client arguments parser.add_argument( "--mode", default="train", choices=("train", "test"), type=str, help="Operation mode", ) # unet module arguments parser.add_argument( "--unet_module", default="unet", choices=("unet", "nestedunet"), type=str, help="Unet module to run with", ) # data transform params parser.add_argument( "--mask_type", choices=("random", "equispaced"), default="random", type=str, help="Type of k-space mask", ) parser.add_argument( "--center_fractions", nargs="+", default=[0.08], type=float, help="Number of center lines to use in mask", ) parser.add_argument( "--accelerations", nargs="+", default=[4], type=int, help="Acceleration rates to use for masks", ) parser.add_argument( "--device", default="cuda", type=str, help="Model to run", ) parser.add_argument( "--state_dict_file", default=None, type=Path, help="Path to saved state_dict (will download if not provided)", ) parser.add_argument( "--output_path", type=Path, # directory for logs and checkpoints default=Path("./fine_tuning"), help="Path for saving reconstructions", ) # unet specific parser.add_argument( "--in_chans", default=1, type=int, help="number of input channels to U-Net", ) parser.add_argument( "--out_chans", default=1, type=int, help="number of output chanenls to U-Net", ) parser.add_argument( "--chans", default=32, type=int, help="number of top-level U-Net channels", ) # RMSProp parameters parser.add_argument( "--opt_drop_prob", default=0.0, type=float, help="dropout probability", ) parser.add_argument( "--opt_lr", default=0.001, type=float, help="RMSProp learning rate", ) parser.add_argument( "--opt_lr_step_size", default=10, type=int, help="epoch at which to decrease learning rate", ) parser.add_argument( "--opt_lr_gamma", default=0.1, type=float, help="extent to which to decrease learning rate", ) parser.add_argument( "--opt_weight_decay", default=0.0, type=float, help="weight decay regularization strength", ) parser.add_argument( "--opt_optimizer", choices=("RMSprop", "Adam"), default="RMSprop", type=str, help="optimizer (RMSprop, Adam)", ) # data config with path to fastMRI data and batch size parser = FastMriDataModule.add_data_specific_args(parser) parser.set_defaults(data_path="/home/ec2-user/mri", batch_size=batch_size, test_path=None) # trainer config parser = pl.Trainer.add_argparse_args(parser) parser.set_defaults( gpus=0, # number of gpus to use replace_sampler_ddp= False, # this is necessary for volume dispatch during val seed=42, # random seed deterministic=True, # makes things slower, but deterministic max_epochs=50, # max number of epochs unet_module="unet", # "unet" or "nestedunet" ) args = parser.parse_args() # module config if args.unet_module == "unet": parser = UnetModule.add_model_specific_args(parser) parser.set_defaults( num_pool_layers=4, # number of U-Net pooling layers drop_prob=args.opt_drop_prob, # dropout probability lr=args.opt_lr, # RMSProp learning rate lr_step_size=args. opt_lr_step_size, # epoch at which to decrease learning rate lr_gamma=args. opt_lr_gamma, # extent to which to decrease learning rate weight_decay=args. opt_weight_decay, # weight decay regularization strength optmizer=args.opt_optimizer, # optimizer (RMSprop, Adam) accelerator="ddp_cpu" if args.device == "cpu" else "ddp", ) elif args.unet_module == "nestedunet": parser = NestedUnetModule.add_model_specific_args(parser) parser.set_defaults( num_pool_layers=4, # number of U-Net pooling layers drop_prob=args.opt_drop_prob, # dropout probability lr=args.opt_lr, # RMSProp learning rate lr_step_size=args. opt_lr_step_size, # epoch at which to decrease learning rate lr_gamma=args. opt_lr_gamma, # extent to which to decrease learning rate weight_decay=args. opt_weight_decay, # weight decay regularization strength optmizer=args.opt_optimizer, # optimizer (RMSprop, Adam) accelerator="ddp_cpu" if args.device == "cpu" else "ddp", ) args = parser.parse_args() # configure checkpointing in checkpoint_dir checkpoint_dir = args.output_path / "checkpoints" if not checkpoint_dir.exists(): checkpoint_dir.mkdir(parents=True) args.checkpoint_callback = pl.callbacks.ModelCheckpoint( dirpath=args.output_path / "checkpoints", save_top_k=True, verbose=True, monitor="validation_loss", mode="min", prefix="", ) # set default checkpoint if one exists in our checkpoint directory if args.resume_from_checkpoint is None: ckpt_list = sorted(checkpoint_dir.glob("*.ckpt"), key=os.path.getmtime) if ckpt_list: args.resume_from_checkpoint = str(ckpt_list[-1]) return args