def test_write_outputs(): problem = FASTOADProblem() problem.model.add_subsystem("sellar", Sellar(), promotes=["*"]) problem.output_file_path = pth.join(RESULTS_FOLDER_PATH, "output.xml") problem.setup() problem.write_outputs() variables = VariableIO(problem.output_file_path).read() assert variables == [ Variable(name="f", value=1.0), Variable(name="g1", value=1.0), Variable(name="g2", value=1.0), Variable(name="x", value=2), Variable(name="y2", value=1.0), Variable(name="z", value=[5.0, 2.0], units="m**2"), ] problem.run_model() problem.write_outputs() variables = VariableIO(problem.output_file_path).read() assert variables == [ Variable(name="f", value=32.569100892077444), Variable(name="g1", value=-23.409095627564167), Variable(name="g2", value=-11.845478137832359), Variable(name="x", value=2), Variable(name="y2", value=12.154521862167641), Variable(name="z", value=[5.0, 2.0], units="m**2"), ]
def get_problem(self, read_inputs: bool = False, auto_scaling: bool = False) -> FASTOADProblem: """ Builds the OpenMDAO problem from current configuration. :param read_inputs: if True, the created problem will already be fed with variables from the input file :param auto_scaling: if True, automatic scaling is performed for design variables and constraints :return: the problem instance """ if not self._conf_dict: raise RuntimeError("read configuration file first") problem = FASTOADProblem(self._build_model()) problem.input_file_path = self.input_file_path problem.output_file_path = self.output_file_path driver = self._conf_dict.get(KEY_DRIVER, "") if driver: problem.driver = _om_eval(driver) if self.get_optimization_definition(): self._add_constraints(problem.model, auto_scaling) self._add_objectives(problem.model) if read_inputs: problem.read_inputs() self._add_design_vars(problem.model, auto_scaling) return problem
def patched_function(inputs_dict: dict) -> dict: """ The patched function perform a run of an openmdao component or group applying FASTOAD formalism. @param inputs_dict: dictionary of input (values, units) saved with their key name, as an example: inputs_dict = {'in1': (3.0, "m")}. @return: dictionary of the component/group outputs saving names as keys and (value, units) as tuple. """ # Read .xml file and construct Independent Variable Component excluding outputs reader.path_separator = ":" ivc_local = reader.to_ivc() for name, value in inputs_dict.items(): ivc_local.add_output(name, value[0], units=value[1]) group_local = AutoUnitsDefaultGroup() group_local.add_subsystem('system', system, promotes=["*"]) group_local.add_subsystem('ivc', ivc_local, promotes=["*"]) problem_local = FASTOADProblem(group_local) problem_local.setup() problem_local.run_model() if overwrite: problem_local.output_file_path = xml_file_path problem_local.write_outputs() # Get output names from component/group and construct dictionary outputs_units = [var.units for var in variables if not var.is_input] outputs_dict = {} for idx in range(len(outputs_names)): value = problem_local.get_val(outputs_names[idx], outputs_units[idx]) outputs_dict[outputs_names[idx]] = (value, outputs_units[idx]) return outputs_dict
def test_write_outputs(): problem = FASTOADProblem() problem.model.add_subsystem("sellar", Sellar(), promotes=["*"]) problem.output_file_path = pth.join(RESULTS_FOLDER_PATH, "output.xml") problem.setup() problem.write_outputs() variables = VariableIO(problem.output_file_path).read() assert variables == [ Variable(name="f", val=1.0), Variable(name="g1", val=1.0), Variable(name="g2", val=1.0), Variable(name="x", val=2.0), Variable(name="y2", val=1.0), Variable(name="z", val=[np.nan, np.nan], units="m**2"), ] problem["x"] = 2.0 problem["z"] = [ 5.0, 2.0, ] # Since version 3.17 of OpenMDAO, the np.nan input definition of z is chosen. problem.run_model() problem.write_outputs() variables = VariableIO(problem.output_file_path).read() assert variables == [ Variable(name="f", val=32.569100892077444), Variable(name="g1", val=-23.409095627564167), Variable(name="g2", val=-11.845478137832359), Variable(name="x", val=2.0), Variable(name="y2", val=12.154521862167641), Variable(name="z", val=[5.0, 2.0], units="m**2"), ]
def get_problem(self, read_inputs: bool = False, auto_scaling: bool = False) -> FASTOADProblem: """ Builds the OpenMDAO problem from current configuration. :param read_inputs: if True, the created problem will already be fed with variables from the input file :param auto_scaling: if True, automatic scaling is performed for design variables and constraints :return: the problem instance """ if self._serializer.data is None: raise RuntimeError("read configuration file first") if read_inputs: problem_with_no_inputs = self.get_problem( auto_scaling=auto_scaling) problem_with_no_inputs.setup() input_ivc, unused_variables = self._get_problem_inputs( problem_with_no_inputs) else: input_ivc = unused_variables = None problem = FASTOADProblem(self._build_model(input_ivc)) problem.input_file_path = self.input_file_path problem.output_file_path = self.output_file_path problem.additional_variables = unused_variables driver = self._serializer.data.get(KEY_DRIVER, "") if driver: problem.driver = _om_eval(driver) if self.get_optimization_definition(): self._add_constraints(problem.model, auto_scaling) self._add_objectives(problem.model) if read_inputs: self._add_design_vars(problem.model, auto_scaling) if self._configuration_modifier: self._configuration_modifier.modify(problem) return problem
def generate_block_analysis( system: Union[ExplicitComponent, ImplicitComponent, Group], var_inputs: List, xml_file_path: str, overwrite: bool = False, ): # Search what are the component/group outputs variables = list_variables(system) inputs_names = [var.name for var in variables if var.is_input] outputs_names = [var.name for var in variables if not var.is_input] # Check that variable inputs are in the group/component list if not(set(var_inputs) == set(inputs_names).intersection(set(var_inputs))): raise Exception('The input list contains name(s) out of component/group input list!') # Perform some tests on the .xml availability and completeness if not(os.path.exists(xml_file_path)) and not(set(var_inputs) == set(inputs_names)): # If no input file and some inputs are missing, generate it and return None if isinstance(system, Group): problem = FASTOADProblem(system) else: group = AutoUnitsDefaultGroup() group.add_subsystem('system', system, promotes=["*"]) problem = FASTOADProblem(group) problem.input_file_path = xml_file_path problem.setup() problem.write_needed_inputs(None, VariableXmlStandardFormatter()) raise Exception('Input .xml file not found, a default file has been created with default NaN values, ' 'but no function is returned!\nConsider defining proper values before second execution!') elif os.path.exists(xml_file_path): reader = VariableIO(xml_file_path, VariableXmlStandardFormatter()).read(ignore=(var_inputs + outputs_names)) xml_inputs = reader.names() if not(set(xml_inputs + var_inputs).intersection(set(inputs_names)) == set(inputs_names)): # If some inputs are missing write an error message and add them to the problem if authorized missing_inputs = list( set(inputs_names).difference(set(xml_inputs + var_inputs).intersection(set(inputs_names))) ) message = 'The following inputs are missing in .xml file:' for item in missing_inputs: message += ' [' + item + '],' message = message[:-1] + '.\n' if overwrite: reader.path_separator = ":" ivc = reader.to_ivc() group = AutoUnitsDefaultGroup() group.add_subsystem('system', system, promotes=["*"]) group.add_subsystem('ivc', ivc, promotes=["*"]) problem = FASTOADProblem(group) problem.input_file_path = xml_file_path problem.output_file_path = xml_file_path problem.setup() problem.write_outputs() message += 'Default values have been added to {} file. ' \ 'Consider modifying them for a second run!'.format(xml_file_path) raise Exception(message) else: raise Exception(message) else: # If all inputs addressed either by .xml or var_inputs, construct the function def patched_function(inputs_dict: dict) -> dict: """ The patched function perform a run of an openmdao component or group applying FASTOAD formalism. @param inputs_dict: dictionary of input (values, units) saved with their key name, as an example: inputs_dict = {'in1': (3.0, "m")}. @return: dictionary of the component/group outputs saving names as keys and (value, units) as tuple. """ # Read .xml file and construct Independent Variable Component excluding outputs reader.path_separator = ":" ivc_local = reader.to_ivc() for name, value in inputs_dict.items(): ivc_local.add_output(name, value[0], units=value[1]) group_local = AutoUnitsDefaultGroup() group_local.add_subsystem('system', system, promotes=["*"]) group_local.add_subsystem('ivc', ivc_local, promotes=["*"]) problem_local = FASTOADProblem(group_local) problem_local.setup() problem_local.run_model() if overwrite: problem_local.output_file_path = xml_file_path problem_local.write_outputs() # Get output names from component/group and construct dictionary outputs_units = [var.units for var in variables if not var.is_input] outputs_dict = {} for idx in range(len(outputs_names)): value = problem_local.get_val(outputs_names[idx], outputs_units[idx]) outputs_dict[outputs_names[idx]] = (value, outputs_units[idx]) return outputs_dict return patched_function