def test_eqlayer_polereduce(): "EQLTotalField can reduce data to the pole" # Use remanent magnetization sinc, sdec = -70, 30 model = [Prism(-100, 100, -500, 500, 0, 100, {'magnetization': utils.ang2vec(5, sinc, sdec)})] inc, dec = -60, -15 shape = (50, 50) area = [-2000, 2000, -2000, 2000] x, y, z = gridder.regular(area, shape, z=-100) data = prism.tf(x, y, z, model, inc, dec) true = prism.tf(x, y, z, model, -90, 0, pmag=utils.ang2vec(5, -90, 0)) layer = PointGrid(area, 200, shape) eql = (EQLTotalField(x, y, z, data, inc, dec, layer, sinc, sdec) + 1e-24*Damping(layer.size)) eql.fit() assert_allclose(eql[0].predicted(), data, rtol=0.01) layer.addprop('magnetization', utils.ang2vec(eql.estimate_, inc=-90, dec=0)) calc = sphere.tf(x, y, z, layer, inc=-90, dec=0) assert_allclose(calc, true, atol=10, rtol=0.05)
def test_pel_polereduce(): "PELTotalField can reduce data to the pole" # Use remanent magnetization sinc, sdec = -70, 30 model = [Prism(-100, 100, -500, 500, 0, 100, {'magnetization': utils.ang2vec(5, sinc, sdec)})] inc, dec = -60, -15 shape = (40, 40) area = [-2000, 2000, -2000, 2000] x, y, z = gridder.regular(area, shape, z=-100) data = prism.tf(x, y, z, model, inc, dec) true = prism.tf(x, y, z, model, -90, 0, pmag=utils.ang2vec(5, -90, 0)) layer = PointGrid(area, 100, shape) windows = (20, 20) degree = 3 pel = PELTotalField(x, y, z, data, inc, dec, layer, windows, degree, sinc, sdec) eql = pel + 1e-25*PELSmoothness(layer, windows, degree) eql.fit() assert_array_almost_equal(eql[0].predicted(), data, decimal=1) layer.addprop('magnetization', utils.ang2vec(eql.estimate_, inc=-90, dec=0)) calc = sphere.tf(x, y, z, layer, inc=-90, dec=0) assert_allclose(calc, true, atol=10, rtol=0.05)
def test_eql_grav_jacobian(): "EQLGravity produces the right Jacobian matrix for single source" model = PointGrid([-10, 10, -10, 10], 500, (2, 2))[0] model.addprop('density', 1) n = 1000 x, y, z = gridder.scatter([-10, 10, -10, 10], n, z=-100, seed=42) data = sphere.gz(x, y, z, [model]) eql = EQLGravity(x, y, z, data, [model]) A = eql.jacobian(None) assert A.shape == (n, 1) assert_allclose(A[:, 0], data, rtol=0.01)
def test_eql_mag_jacobian(): "EQLTotalField produces the right Jacobian matrix for single source" inc, dec = -30, 20 model = PointGrid([-10, 10, -10, 10], 500, (2, 2))[0] model.addprop('magnetization', utils.ang2vec(1, inc, dec)) n = 1000 x, y, z = gridder.scatter([-10, 10, -10, 10], n, z=-100, seed=42) data = sphere.tf(x, y, z, [model], inc, dec) eql = EQLTotalField(x, y, z, data, inc, dec, [model]) A = eql.jacobian(None) assert A.shape == (n, 1) assert_allclose(A[:, 0], data, rtol=0.01)
def test_eqlgrav_prism_interp(): "EQLGravity can interpolate data from a prism" model = [Prism(-300, 300, -500, 500, 100, 600, {'density': 400})] shape = (30, 30) n = shape[0]*shape[1] area = [-2000, 2000, -2000, 2000] x, y, z = gridder.scatter(area, n, z=-100, seed=42) data = prism.gz(x, y, z, model) layer = PointGrid(area, 200, shape) eql = EQLGravity(x, y, z, data, layer) + 1e-23*Damping(layer.size) eql.fit() layer.addprop('density', eql.estimate_) assert_allclose(eql[0].predicted(), data, rtol=0.01) xp, yp, zp = gridder.regular(area, shape, z=-100) true = prism.gz(xp, yp, zp, model) calc = sphere.gz(xp, yp, zp, layer) assert_allclose(calc, true, rtol=0.05)
def test_pelgrav_prism_interp(): "PELGravity can interpolate data from a prism" model = [Prism(-300, 300, -500, 500, 100, 600, {'density': 400})] shape = (40, 40) n = shape[0]*shape[1] area = [-2000, 2000, -2000, 2000] x, y, z = gridder.scatter(area, n, z=-100, seed=42) data = prism.gz(x, y, z, model) layer = PointGrid(area, 100, shape) windows = (20, 20) degree = 1 eql = (PELGravity(x, y, z, data, layer, windows, degree) + 5e-22*PELSmoothness(layer, windows, degree)) eql.fit() layer.addprop('density', eql.estimate_) assert_allclose(eql[0].predicted(), data, rtol=0.01) xp, yp, zp = gridder.regular(area, shape, z=-100) true = prism.gz(xp, yp, zp, model) calc = sphere.gz(xp, yp, zp, layer) assert_allclose(calc, true, atol=0.001, rtol=0.05)