def test_seasonality_modes(self): # Model with holidays, seasonalities, and extra regressors holidays = pd.DataFrame({ 'ds': pd.to_datetime(['2016-12-25']), 'holiday': ['xmas'], 'lower_window': [-1], 'upper_window': [0], }) m = Prophet(seasonality_mode='multiplicative', holidays=holidays) m.add_seasonality('monthly', period=30, mode='additive', fourier_order=3) m.add_regressor('binary_feature', mode='additive') m.add_regressor('numeric_feature') # Construct seasonal features df = DATA.copy() df['binary_feature'] = [0] * 255 + [1] * 255 df['numeric_feature'] = range(510) df = m.setup_dataframe(df, initialize_scales=True) m.history = df.copy() m.set_auto_seasonalities() seasonal_features, prior_scales, component_cols, modes = ( m.make_all_seasonality_features(df)) self.assertEqual(sum(component_cols['additive_terms']), 7) self.assertEqual(sum(component_cols['multiplicative_terms']), 29) self.assertEqual( set(modes['additive']), {'monthly', 'binary_feature', 'additive_terms', 'extra_regressors_additive'}, ) self.assertEqual( set(modes['multiplicative']), {'weekly', 'yearly', 'xmas', 'numeric_feature', 'multiplicative_terms', 'extra_regressors_multiplicative', 'holidays', }, )
def test_copy(self): df = DATA_all.copy() df['cap'] = 200. df['binary_feature'] = [0] * 255 + [1] * 255 # These values are created except for its default values holiday = pd.DataFrame({ 'ds': pd.to_datetime(['2016-12-25']), 'holiday': ['x'] }) append_holidays = 'US' products = itertools.product( ['linear', 'logistic'], # growth [None, pd.to_datetime(['2016-12-25'])], # changepoints [3], # n_changepoints [0.9], # changepoint_range [True, False], # yearly_seasonality [True, False], # weekly_seasonality [True, False], # daily_seasonality [None, holiday], # holidays [None, append_holidays], # append_holidays ['additive', 'multiplicative'], # seasonality_mode [1.1], # seasonality_prior_scale [1.1], # holidays_prior_scale [0.1], # changepoint_prior_scale [100], # mcmc_samples [0.9], # interval_width [200] # uncertainty_samples ) # Values should be copied correctly for product in products: m1 = Prophet(*product) m1.history = m1.setup_dataframe(df.copy(), initialize_scales=True) m1.set_auto_seasonalities() m2 = diagnostics.prophet_copy(m1) self.assertEqual(m1.growth, m2.growth) self.assertEqual(m1.n_changepoints, m2.n_changepoints) self.assertEqual(m1.changepoint_range, m2.changepoint_range) self.assertEqual(m1.changepoints, m2.changepoints) self.assertEqual(False, m2.yearly_seasonality) self.assertEqual(False, m2.weekly_seasonality) self.assertEqual(False, m2.daily_seasonality) self.assertEqual(m1.yearly_seasonality, 'yearly' in m2.seasonalities) self.assertEqual(m1.weekly_seasonality, 'weekly' in m2.seasonalities) self.assertEqual(m1.daily_seasonality, 'daily' in m2.seasonalities) if m1.holidays is None: self.assertEqual(m1.holidays, m2.holidays) else: self.assertTrue((m1.holidays == m2.holidays).values.all()) self.assertEqual(m1.append_holidays, m2.append_holidays) self.assertEqual(m1.seasonality_mode, m2.seasonality_mode) self.assertEqual(m1.seasonality_prior_scale, m2.seasonality_prior_scale) self.assertEqual(m1.changepoint_prior_scale, m2.changepoint_prior_scale) self.assertEqual(m1.holidays_prior_scale, m2.holidays_prior_scale) self.assertEqual(m1.mcmc_samples, m2.mcmc_samples) self.assertEqual(m1.interval_width, m2.interval_width) self.assertEqual(m1.uncertainty_samples, m2.uncertainty_samples) # Check for cutoff and custom seasonality and extra regressors changepoints = pd.date_range('2012-06-15', '2012-09-15') cutoff = pd.Timestamp('2012-07-25') m1 = Prophet(changepoints=changepoints) m1.add_seasonality('custom', 10, 5) m1.add_regressor('binary_feature') m1.fit(df) m2 = diagnostics.prophet_copy(m1, cutoff=cutoff) changepoints = changepoints[changepoints <= cutoff] self.assertTrue((changepoints == m2.changepoints).all()) self.assertTrue('custom' in m2.seasonalities) self.assertTrue('binary_feature' in m2.extra_regressors)
def test_copy(self): df = DATA_all.copy() df['cap'] = 200. df['binary_feature'] = [0] * 255 + [1] * 255 # These values are created except for its default values holiday = pd.DataFrame( {'ds': pd.to_datetime(['2016-12-25']), 'holiday': ['x']}) products = itertools.product( ['linear', 'logistic'], # growth [None, pd.to_datetime(['2016-12-25'])], # changepoints [3], # n_changepoints [0.9], # changepoint_range [True, False], # yearly_seasonality [True, False], # weekly_seasonality [True, False], # daily_seasonality [None, holiday], # holidays ['additive', 'multiplicative'], # seasonality_mode [1.1], # seasonality_prior_scale [1.1], # holidays_prior_scale [0.1], # changepoint_prior_scale [100], # mcmc_samples [0.9], # interval_width [200] # uncertainty_samples ) # Values should be copied correctly for product in products: m1 = Prophet(*product) m1.history = m1.setup_dataframe( df.copy(), initialize_scales=True) m1.set_auto_seasonalities() m2 = diagnostics.prophet_copy(m1) self.assertEqual(m1.growth, m2.growth) self.assertEqual(m1.n_changepoints, m2.n_changepoints) self.assertEqual(m1.changepoint_range, m2.changepoint_range) self.assertEqual(m1.changepoints, m2.changepoints) self.assertEqual(False, m2.yearly_seasonality) self.assertEqual(False, m2.weekly_seasonality) self.assertEqual(False, m2.daily_seasonality) self.assertEqual( m1.yearly_seasonality, 'yearly' in m2.seasonalities) self.assertEqual( m1.weekly_seasonality, 'weekly' in m2.seasonalities) self.assertEqual( m1.daily_seasonality, 'daily' in m2.seasonalities) if m1.holidays is None: self.assertEqual(m1.holidays, m2.holidays) else: self.assertTrue((m1.holidays == m2.holidays).values.all()) self.assertEqual(m1.seasonality_mode, m2.seasonality_mode) self.assertEqual(m1.seasonality_prior_scale, m2.seasonality_prior_scale) self.assertEqual(m1.changepoint_prior_scale, m2.changepoint_prior_scale) self.assertEqual(m1.holidays_prior_scale, m2.holidays_prior_scale) self.assertEqual(m1.mcmc_samples, m2.mcmc_samples) self.assertEqual(m1.interval_width, m2.interval_width) self.assertEqual(m1.uncertainty_samples, m2.uncertainty_samples) # Check for cutoff and custom seasonality and extra regressors changepoints = pd.date_range('2012-06-15', '2012-09-15') cutoff = pd.Timestamp('2012-07-25') m1 = Prophet(changepoints=changepoints) m1.add_seasonality('custom', 10, 5) m1.add_regressor('binary_feature') m1.fit(df) m2 = diagnostics.prophet_copy(m1, cutoff=cutoff) changepoints = changepoints[changepoints <= cutoff] self.assertTrue((changepoints == m2.changepoints).all()) self.assertTrue('custom' in m2.seasonalities) self.assertTrue('binary_feature' in m2.extra_regressors)