def side_force_coeff_test_cases():
    constants = SkywalkerX8Constants()
    b = constants.wing_span
    state1 = State()
    state1.vx = 20.0
    state1.vy = 0.0
    state1.vz = 0.0
    state2 = State()
    state2.vx = 28.6362532829
    state2.vy = 1.0
    state2.vz = 0.0
    state2.ang_rate_x = 5 * np.pi / 180
    state2.ang_rate_z = 5 * np.pi / 180
    wind = np.zeros(6)
    airspeed = np.sqrt(np.sum(calc_airspeed(state2, wind)**2))
    zero_input = ControlInput()
    aileron_input = ControlInput()
    aileron_input.aileron_deflection = 2.0 * np.pi / 180.0

    return [
        (state1, wind, 0.0, zero_input, 2.99968641720902E-08),
        (state1, wind, 1.0, zero_input, -7.94977329537982E-06),
        (state2, wind, 0.0, aileron_input,
         -0.008604744865183 + -0.085 * b / (2 * airspeed) * state2.ang_rate_x +
         0.005 * b / (2 * airspeed) * state2.ang_rate_z +
         0.0433 * aileron_input.aileron_deflection),
        (state2, wind, 1.0, aileron_input,
         -0.007089388672593 + -0.133 * b / (2 * airspeed) * state2.ang_rate_x +
         0.002 * b / (2 * airspeed) * state2.ang_rate_z +
         0.0433 * aileron_input.aileron_deflection)
    ]
def yaw_moment_coeff_test_cases():
    constants = SkywalkerX8Constants()
    b = constants.wing_span
    state1 = State()
    state1.vx = 20.0
    state1.vy = 0.0
    state1.vz = 0.0
    state2 = State()
    state2.vx = 28.6362532829
    state2.vy = 1.0
    state2.vz = 0.0
    state2.ang_rate_x = 5 * np.pi / 180
    state2.ang_rate_z = 5 * np.pi / 180
    wind = np.zeros(6)
    airspeed = np.sqrt(np.sum(calc_airspeed(state2, wind)**2))
    zero_input = ControlInput()
    aileron_input = ControlInput()
    aileron_input.aileron_deflection = 2.0 * np.pi / 180.0

    return [
        (state1, wind, 0.0, zero_input, 4.9176697574439E-06),
        (state1, wind, 1.0, zero_input, 1.96093394589053E-05),
        (state2, wind, 0.0, aileron_input,
         0.000825947539055 + 0.027 * b / (2 * airspeed) * state2.ang_rate_x +
         -0.022 * b / (2 * airspeed) * state2.ang_rate_z -
         0.00339 * aileron_input.aileron_deflection),
        (state2, wind, 1.0, aileron_input,
         0.001052911121301 + 0.017 * b / (2 * airspeed) * state2.ang_rate_x +
         -0.049 * b / (2 * airspeed) * state2.ang_rate_z -
         0.00339 * aileron_input.aileron_deflection)
    ]
def roll_moment_coeff_test_cases():
    constants = SkywalkerX8Constants()
    b = constants.wing_span
    state1 = State()
    state1.vx = 20.0
    state1.vy = 0.0
    state1.vz = 0.0
    state2 = State()
    state2.vx = 28.6362532829
    state2.vy = 1.0
    state2.vz = 0.0
    state2.ang_rate_x = 5 * np.pi / 180
    state2.ang_rate_z = 5 * np.pi / 180
    wind = np.zeros(6)
    airspeed = np.sqrt(np.sum(calc_airspeed(state2, wind)**2))
    zero_input = ControlInput()
    aileron_input = ControlInput()
    aileron_input.aileron_deflection = 2.0 * np.pi / 180.0

    return [
        (state1, wind, 0.0, zero_input, -8.40821757613653E-05),
        (state1, wind, 1.0, zero_input, -7.34515369827804E-05),
        (state2, wind, 0.0, aileron_input,
         -0.00380800071177 + -0.409 * b / (2 * airspeed) * state2.ang_rate_x +
         0.039 * b / (2 * airspeed) * state2.ang_rate_z +
         0.12 * aileron_input.aileron_deflection),
        (state2, wind, 1.0, aileron_input,
         -0.003067251004494 + -0.407 * b / (2 * airspeed) * state2.ang_rate_x +
         0.158 * b / (2 * airspeed) * state2.ang_rate_z +
         0.12 * aileron_input.aileron_deflection)
    ]
示例#4
0
 def pitch_moment_coeff(self, state: State, wind: np.ndarray) -> float:
     airspeed = np.sqrt(np.sum(calc_airspeed(state, wind)**2))
     alpha = calc_angle_of_attack(state, wind) * 180.0 / np.pi
     c = self.constants.mean_chord
     delta_e = self.control_input.elevator_deflection
     rot_airspeed_with_wind = calc_rotational_airspeed(state, wind)
     ang_rate_y_r = rot_airspeed_with_wind[1]
     return self.C_m_alpha(alpha, self.icing) + \
         (self.C_m_q(alpha, self.icing) * c / (2*airspeed)) * ang_rate_y_r + \
         self.C_m_delta_e(alpha, self.icing)*delta_e
示例#5
0
 def drag_coeff(self, state: State, wind: np.ndarray) -> float:
     airspeed = np.sqrt(np.sum(calc_airspeed(state, wind)**2))
     alpha = calc_angle_of_attack(state, wind) * 180.0 / np.pi
     c = self.constants.mean_chord
     delta_e = self.control_input.elevator_deflection
     rot_airspeed_with_wind = calc_rotational_airspeed(state, wind)
     ang_rate_y_r = rot_airspeed_with_wind[1]
     # TODO: If C_D_q becomes non-zero, should test term containing C_D_q
     return self.C_D_alpha(alpha, self.icing) + \
         self.C_D_q(alpha, self.icing) * c / (2*airspeed) * ang_rate_y_r + \
         self.C_D_delta_e(alpha, self.icing)*np.abs(delta_e)
示例#6
0
def dynamics_kinetmatics_update(t: float, x: np.ndarray, u: np.ndarray, params: dict) -> np.ndarray:
    prop = params['prop']
    wind = params['wind'].get(t)
    prop_updater = params.get('prop_updater', None)
    state = State(init=x)
    # wind_translational = inertial2body(wind[:3], state)
    # wind = np.array([wind_translational[0], wind_translational[1], wind_translational[2], 0, 0, 0])
    # Update the control inputs
    prop.control_input = ControlInput(init=u)
    if prop_updater is not None:
        prop.update_params(prop_updater.get_param_dict(t))
    update = np.zeros_like(x)
    V_a = np.sqrt(np.sum(calc_airspeed(state, wind)**2))
    b = prop.wing_span()
    S = prop.wing_area()
    c = prop.mean_chord()
    S_prop = prop.propeller_area()
    C_prop = prop.motor_efficiency_fact()
    k_motor = prop.motor_constant()
    qS = 0.5*AIR_DENSITY*S*V_a**2
    force_aero_wind_frame = qS*np.array([-prop.drag_coeff(state, wind),
                                        prop.side_force_coeff(state, wind),
                                        -prop.lift_coeff(state, wind)])
    force_aero_body_frame = wind2body(force_aero_wind_frame, state, wind)
    moment_coeff_vec = np.array([b*prop.roll_moment_coeff(state, wind),
                                 c*prop.pitch_moment_coeff(state, wind),
                                 b*prop.yaw_moment_coeff(state, wind)])
    moment_vec = qS*moment_coeff_vec
    omega = np.array([state.ang_rate_x, state.ang_rate_y, state.ang_rate_z]) - wind[3:]
    velocity = np.array([state.vx, state.vy, state.vz]) - wind[:3]

    gravity_body_frame = inertial2body([0.0, 0.0, prop.mass()*GRAVITY_CONST], state)
    F_propulsion = 0.5*AIR_DENSITY*S_prop*C_prop * \
        np.array([(k_motor*prop.control_input.throttle)**2-V_a**2, 0, 0])

    v_dot = (force_aero_body_frame + gravity_body_frame + F_propulsion) / \
        prop.mass() - np.cross(omega, velocity)

    # Velocity update
    update[StateVecIndices.V_X:StateVecIndices.V_Z+1] = v_dot
    # Momentum equations
    omega_dot = \
        prop.inv_inertia_matrix().dot(moment_vec - np.cross(omega, prop.inertia_matrix().dot(omega)))
    update[StateVecIndices.ANG_RATE_X:StateVecIndices.ANG_RATE_Z+1] = omega_dot
    # Kinematics
    # Position updates
    update[StateVecIndices.X:StateVecIndices.Z +
           1] = body2inertial([state.vx, state.vy, state.vz], state)

    # Angle updates
    update[StateVecIndices.ROLL:StateVecIndices.YAW +
           1] = body2euler([state.ang_rate_x, state.ang_rate_y, state.ang_rate_z], state)
    return update
示例#7
0
 def yaw_moment_coeff(self, state: State, wind: np.ndarray) -> float:
     airspeed = np.sqrt(np.sum(calc_airspeed(state, wind)**2))
     beta = calc_angle_of_sideslip(state, wind) * 180.0 / np.pi
     b = self.constants.wing_span
     delta_a = self.control_input.aileron_deflection
     rot_airspeed_with_wind = calc_rotational_airspeed(state, wind)
     ang_rate_x_r = rot_airspeed_with_wind[0]
     ang_rate_z_r = rot_airspeed_with_wind[2]
     return self.C_n_beta(beta, self.icing) + \
         (self.C_n_p(beta, self.icing) * b / (2*airspeed)) * ang_rate_x_r + \
         (self.C_n_r(beta, self.icing) * b / (2*airspeed)) * \
         ang_rate_z_r + self.C_n_delta_a(beta, self.icing)*delta_a
示例#8
0
def test_dynamics_forces():
    control_input = ControlInput()
    prop = SimpleTestAircraftNoMoments(control_input)
    t = 0
    for i in range(-50, 101, 50):
        control_input.throttle = 0.8
        control_input.elevator_deflection = i
        control_input.aileron_deflection = i
        control_input.rudder_deflection = i

        state = State()
        state.vx = 20.0
        state.vy = 1
        state.vz = 0
        params = {"prop": prop, "wind": no_wind()}
        update = dynamics_kinetmatics_update(t=t,
                                             x=state.state,
                                             u=control_input.control_input,
                                             params=params)
        V_a = np.sqrt(np.sum(calc_airspeed(state, params['wind'].get(0.0))**2))

        forces_aero_wind_frame = np.array([
            -np.abs(control_input.elevator_deflection),
            control_input.aileron_deflection, -control_input.rudder_deflection
        ])
        forces_aero_body_frame = wind2body(forces_aero_wind_frame, state,
                                           params['wind'].get(0))
        force_propulsion = np.array([(2 * control_input.throttle)**2 - V_a**2,
                                     0, 0])
        force_gravity = inertial2body(
            np.array([0, 0, prop.mass() * GRAVITY_CONST]), state)
        forces_body = forces_aero_body_frame + force_propulsion + force_gravity
        vx_update_expect = (1 / prop.mass()) * forces_body[0]
        vy_update_expect = (1 / prop.mass()) * forces_body[1]
        vz_update_expect = (1 / prop.mass()) * forces_body[2]
        # No moments
        ang_rate_x_update_expect = 0
        ang_rate_y_update_expect = 0
        ang_rate_z_update_expect = 0

        assert np.allclose(vx_update_expect, update[6])
        assert np.allclose(vy_update_expect, update[7])
        assert np.allclose(vz_update_expect, update[8])
        assert np.allclose(ang_rate_x_update_expect, update[9])
        assert np.allclose(ang_rate_y_update_expect, update[10])
        assert np.allclose(ang_rate_z_update_expect, update[11])
def lift_coeff_test_cases():
    constants = SkywalkerX8Constants()
    c = constants.mean_chord
    state1 = State()
    state1.vx = 20.0
    state1.vz = 0.0
    state2 = State()
    state2.vx = 20.0
    state2.vz = 0.0
    state2.ang_rate_y = 5 * np.pi / 180
    wind1 = np.zeros(6)
    wind2 = np.zeros(6)
    wind3 = np.zeros(6)
    wind2[0] = 1.0
    wind2[2] = -19.0 * np.tan(8 * np.pi / 180.0)
    wind3[0] = 1.0
    wind3[2] = -19.0 * np.tan(8 * np.pi / 180.0)
    wind3[4] = 3 * np.pi / 180
    ang_rate_y2 = state2.ang_rate_y - wind3[4]
    airspeed2 = np.sqrt(np.sum(calc_airspeed(state2, wind2)**2))
    zero_input = ControlInput()
    elevator_input = ControlInput()
    elevator_input.elevator_deflection = 2.0 * np.pi / 180.0

    return [(state1, wind1, 0.0, zero_input, 0.030075562375465),
            (state1, wind1, 1.0, zero_input, 0.018798581619545),
            (state1, wind2, 0.0, zero_input, 0.609296679062686),
            (state1, wind2, 1.0, zero_input, 0.454153721254944),
            (state1, wind1, 0.0, elevator_input,
             0.030075562375465 + 0.278 * elevator_input.elevator_deflection),
            (state1, wind1, 1.0, elevator_input,
             0.018798581619545 + 0.278 * elevator_input.elevator_deflection),
            (state2, wind3, 0.0, elevator_input,
             0.609296679062686 + 4.60 * c / (2 * airspeed2) * ang_rate_y2 +
             0.278 * elevator_input.elevator_deflection),
            (state2, wind3, 1.0, elevator_input,
             0.454153721254944 - 3.51 * c / (2 * airspeed2) * ang_rate_y2 +
             0.278 * elevator_input.elevator_deflection)]
示例#10
0
 def side_force_coeff(self, state: State, wind: np.ndarray) -> float:
     V_a = np.sqrt(np.sum(calc_airspeed(state, wind)**2))
     # Test func: F_side_force = delta_r -> C_lift = 2/(wing_area*AIR_DENSITY*V_a^2)
     return 2 / (self.wing_area() * AIR_DENSITY *
                 V_a**2) * self.control_input.rudder_deflection
示例#11
0
 def drag_coeff(self, state: State, wind: np.ndarray) -> float:
     V_a = np.sqrt(np.sum(calc_airspeed(state, wind)**2))
     # Test func: F_drag = abs(delta_e)-> C_drag = (2/(wing_area*AIR_DENSITY*V_a^2)* abs(delta_e)
     return 2 / (self.wing_area() * AIR_DENSITY * V_a**2) * np.abs(
         self.control_input.elevator_deflection)
示例#12
0
 def yaw_moment_coeff(self, state: State, wind: np.ndarray) -> float:
     V_a = np.sqrt(np.sum(calc_airspeed(state, wind)**2))
     # Test func: yaw_moment = delta_r
     # -> C_yaw_moment = (2/(wing_area*AIR_DENSITY*wing_span*V_a^2)*delta_r
     return 2/(self.wing_area()*self.wing_span()*AIR_DENSITY*V_a**2) *\
         self.control_input.rudder_deflection
示例#13
0
 def pitch_moment_coeff(self, state: State, wind: np.ndarray) -> float:
     V_a = np.sqrt(np.sum(calc_airspeed(state, wind)**2))
     # Test func: Pitch_moment = delta_a
     # -> C_pitch_moment = (2/(wing_area*mean_chord*AIR_DENSITY*V_a^2)*delta_a
     return 2/(self.wing_area()*self.mean_chord()*AIR_DENSITY*V_a**2) *\
         self.control_input.aileron_deflection
示例#14
0
 def roll_moment_coeff(self, state: State, wind: np.ndarray) -> float:
     V_a = np.sqrt(np.sum(calc_airspeed(state, wind)**2))
     # Test func: Roll_moment = delta_e
     # -> C_roll_moment = (2/(wing_area*wing_span*AIR_DENSITY*V_a^2)*delta_e
     return 2/(self.wing_area()*self.wing_span()*AIR_DENSITY*V_a**2) *\
         self.control_input.elevator_deflection