capacity=min_queue_examples + (num_threads+2)*BATCH_SIZE, seed=3, min_after_dequeue=min_queue_examples) return input_batch, mask_batch, label_batch def next_batch(inputrgb_queue, inputmsk_queue, label_queue): input_batch, mask_batch, label_batch = train_label_reader(inputrgb_queue, inputmsk_queue, label_queue) batch = tf.concat([input_batch, mask_batch, label_batch], axis=3) return batch sess = tf.InteractiveSession() images = tf.placeholder("float") batch_images = tf.expand_dims(images, 0) vgg_fcn = fcn8_vgg_ours.FCN8VGG() with tf.name_scope("content_vgg"): vgg_fcn.build(batch_images, debug=True) labels = tf.placeholder("int32", [None, HEIGHT, WIDTH]) loss = fcn8_vgg_ours.pixel_wise_cross_entropy(vgg_fcn.upscore32, labels, num_classes = 2) tf.summary.scalar('pixel_wise_cross_entropy_loss', loss) merged_summary = tf.summary.merge_all() train_writer = tf.summary.FileWriter('./train_summary', sess.graph) train_step = tf.train.AdamOptimizer(1e-4,0.9).minimize(loss) logging.info("********* CNN constructed *********") train_file = "./all_train_imgs.csv"
stream=sys.stdout) from tensorflow.python.framework import ops img1 = scp.misc.imread("./test_data/tabby_cat.png") fake_mask = scp.misc.imread("./test_data/tabby_cat.png", 'L') msk_layer = np.expand_dims(fake_mask, axis=2) print(msk_layer.shape, img1.shape) input_img = np.append(img1, msk_layer, 2) print("shape", input_img.shape) with tf.Session() as sess: images = tf.placeholder("float") feed_dict = {images: input_img} batch_images = tf.expand_dims(images, 0) vgg_fcn = fcn8_vgg.FCN8VGG() with tf.name_scope("content_vgg"): vgg_fcn.build(batch_images, debug=True) print('Finished building Network.') logging.warning("Score weights are initialized random.") logging.warning("Do not expect meaningful results.") logging.info("Start Initializing Variabels.") init = tf.global_variables_initializer() sess.run(init) print('Running the Network') tensors = [vgg_fcn.pred, vgg_fcn.pred_up]
fake_mask = scp.misc.imread("./test_data/tabby_cat.png", 'L') # ‘L’ (8-bit pixels, black and white) # && msk_layer = np.expand_dims(fake_mask, axis=2) print(msk_layer.shape, img1.shape) input_img = np.append(img1, msk_layer, 2) print("shape", input_img.shape) with tf.Session() as sess: # open session images = tf.placeholder("float") feed_dict = { images: input_img } # (feed_dict is just an argument for sess.run() function) # && batch_images = tf.expand_dims(images, 0) # (to build vgg_fcn) vgg_fcn = fcn8_vgg.FCN8VGG( ) # build the vgg_fcn ("VGG OBJECT") for finetuning (FCN8 VGG here) with tf.name_scope("content_vgg"): vgg_fcn.build( batch_images, debug=True) # "" batch_images to build vgg_fcn ("VGG OBJECT") print('Finished building Network.') logging.warning("Score weights are initialized random.") logging.warning("Do not expect meaningful results.") logging.info("Start Initializing Variabels.") init = tf.global_variables_initializer() sess.run(init)