M = np.outer(m, n) / N J = R + M ### Simulate Z = sim.SimulateActivity(t, sim.GetGaussianVector(0, 1, N), J, I=0) # Store fac.Store(Z[:, 0:Nsample], 'Z.p', path_here) else: # Retrieve Z = fac.Retrieve('Z.p', path_here) #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### ### Plot fac.SetPlotParams() fg = plt.figure() ax0 = plt.axes(frameon=True) for i in range(Nsample): plt.plot(t, (Z[:, i]), color='0.6') ax0.spines['top'].set_visible(False) ax0.spines['right'].set_visible(False) ax0.yaxis.set_ticks_position('left')
fac.Store(mu_s, 'mu_s.p', path_here) fac.Store(delta0_s, 'delta0_s.p', path_here) fac.Store(delta0I_s, 'delta0I_s.p', path_here) fac.Store(mu_c, 'mu_c.p', path_here) fac.Store(delta0_c, 'delta0_c.p', path_here) fac.Store(deltainf_c, 'deltainf_c.p', path_here) fac.Store(delta0I_c, 'delta0I_c.p', path_here) fac.Store(deltainfI_c, 'deltainfI_c.p', path_here) fac.Store(radius, 'radius.p', path_here) fac.Store(outlier, 'outlier.p', path_here) else: # Retrieve mu_s = fac.Retrieve('mu_s.p', path_here) delta0_s = fac.Retrieve('delta0_s.p', path_here) delta0I_s = fac.Retrieve('delta0I_s.p', path_here) mu_c = fac.Retrieve('mu_c.p', path_here) delta0_c = fac.Retrieve('delta0_c.p', path_here) deltainf_c = fac.Retrieve('deltainf_c.p', path_here) delta0I_c = fac.Retrieve('delta0I_c.p', path_here) deltainfI_c = fac.Retrieve('deltainfI_c.p', path_here) radius = fac.Retrieve('radius.p', path_here) outlier = fac.Retrieve('outlier.p', path_here) #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### ### Plot # We plot K = Mn*phi as first-order statistics and individual variances as second-order statistics K_s = mu_s / Mm
#### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### ### Import functions import matplotlib.pyplot as plt import numpy as np import fct_simulations as sim import fct_facilities as fac #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### ### Load data path_data = 'Data/' structure = fac.Retrieve('structure.p', path_data) activation = fac.Retrieve('activation.p', path_data) readout = fac.Retrieve('readout.p', path_data) t = fac.Retrieve('t.p', path_data) t1 = fac.Retrieve('t1.p', path_data) t2 = fac.Retrieve('t2.p', path_data) t3 = fac.Retrieve('t3.p', path_data) Sii, Siw = fac.Retrieve('ParVec.p', path_data) m = structure[0] IA = structure[1] IB = structure[2] N = activation.shape[2]
### Compute CENTRAL solution mu_s[2,i], delta0_s[2,i], K_s[2,i] = mf.SolveStatic ( ics_2, g, ParVec, backwards = -1. ) # Store fac.Store( K_s, 'K_s.p', path_here) fac.Store( mu_s, 'mu_s.p', path_here) fac.Store( delta0_s, 'delta0_s.p', path_here) else: # Retrieve K_s = fac.Retrieve('K_s.p', path_here) mu_s = fac.Retrieve('mu_s.p', path_here) delta0_s = fac.Retrieve('delta0_s.p', path_here) #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### ### Plot fac.SetPlotParams() dashes = [3, 3] color_s = '#4872A1' # Kappa # Plot the negative and central branch of the solution only when they are not equal to the positive one
import matplotlib.pyplot as plt import numpy as np import fct_simulations as sim import fct_facilities as fac #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### ### Load data doCompute = 1 path_data = 'Data/' structure = fac.Retrieve('structure.p', path_data) activation = fac.Retrieve('activation.p', path_data) connectivity = fac.Retrieve('average_connectivity.p', path_data) N = activation.shape[2] #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### ### Compute PC axis # We compute the PC axis separately from the Go and the Nogo trials XA = activation[0,:,:] XB = activation[1,:,:] # Z-score
eig = mf.EigStationary(g, ParVec, [readout[2, i], delta0_cl], p, pm, pI) outlier[2, i] = eig[0] radius[2, i] = g * np.sqrt(integ.PrimeSq(0, delta0_cl)) # Store fac.Store(readout, 'readout.p', 'VaryA/') fac.Store(outlier, 'outlier.p', 'VaryA/') fac.Store(radius, 'radius.p', 'VaryA/') else: # Retrieve readout = fac.Retrieve('readout.p', 'VaryA/') outlier = fac.Retrieve('outlier.p', 'VaryA/') radius = fac.Retrieve('radius.p', 'VaryA/') #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### ### Plot fac.SetPlotParams() dashes = [3, 3] #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### #### ### Readout fg = plt.figure() ax0 = plt.axes(frameon=True)