def preprocess(self, mode="Blue"): gray = cv2.cvtColor(self.bgr, cv2.COLOR_BGR2GRAY) if mode == "Blue": self.mode = "Blue" self.gray = gray #iicontrast(gray)#contrast(gray)#equalized_image = cv2.equalizeHist(self.gray) else: self.mode = "Yellow" self.gray = 255 - gray self.DoG = DoG(self.gray) #Difference of Gaussians self.laplacian = Laplacian(self.gray, needcontrast=False) self.thr = AdaptiveThreshold(self.laplacian) self.thr = maskize(self.thr, self.DoG)
def preprocess(self, image): self.bgr = image gray = cv2.cvtColor(self.bgr, cv2.COLOR_BGR2GRAY) self.gray = icontrast(255 - gray) self.laplacian = Laplacian(gray) #self.sobel = Sobel(gray) #self.entropy = Entropy(gray) #self.garbor = Garbor(gray) self.DoG = DoG(gray) self.lthr = AdaptiveThreshold(self.laplacian) self.tophat = tophatmask(gray) #tophatblackhat(gray) masks = [] #masks.append(self.tophat) masks.append(self.DoG) self.compose = maskize(self.lthr, masks) self.contour = np.zeros((self.compose.shape[:2]), np.uint8)