示例#1
0
def test_encoding_method_param(df_enc):
    # defaults
    encoder = DecisionTreeEncoder()
    encoder.fit(df_enc, df_enc["target"])
    assert encoder.encoder_[0].encoding_method == "arbitrary"

    # ordered encoding
    encoder = DecisionTreeEncoder(encoding_method="ordered")
    encoder.fit(df_enc[["var_A", "var_B"]], df_enc["target"])
    assert encoder.encoder_[0].encoding_method == "ordered"

    # incorrect input
    with pytest.raises(ValueError):
        encoder = DecisionTreeEncoder(encoding_method="other")
        encoder.fit(df_enc, df_enc["target"])
示例#2
0
def test_classification_ignore_format(df_enc_numeric):
    encoder = DecisionTreeEncoder(regression=False, ignore_format=True)
    encoder.fit(df_enc_numeric[["var_A", "var_B"]], df_enc_numeric["target"])
    X = encoder.transform(df_enc_numeric[["var_A", "var_B"]])

    transf_df = df_enc_numeric.copy()
    transf_df["var_A"] = [0.25] * 16 + [0.5] * 4  # Tree: var_A <= 1.5 -> 0.25 else 0.5
    transf_df["var_B"] = [0.2] * 10 + [0.4] * 10  # Tree: var_B <= 0.5 -> 0.2 else 0.4
    pd.testing.assert_frame_equal(X, transf_df[["var_A", "var_B"]])
示例#3
0
def test_variables_cast_as_category(df_enc_category_dtypes):
    df = df_enc_category_dtypes.copy()
    encoder = DecisionTreeEncoder(regression=False)
    encoder.fit(df[["var_A", "var_B"]], df["target"])
    X = encoder.transform(df[["var_A", "var_B"]])

    transf_df = df.copy()
    transf_df["var_A"] = [0.25] * 16 + [0.5] * 4  # Tree: var_A <= 1.5 -> 0.25 else 0.5
    transf_df["var_B"] = [0.2] * 10 + [0.4] * 10  # Tree: var_B <= 0.5 -> 0.2 else 0.4
    pd.testing.assert_frame_equal(X, transf_df[["var_A", "var_B"]], check_dtype=False)
    assert X["var_A"].dtypes == float
def test_regression(df_enc, df_enc_na):
    random = np.random.RandomState(42)
    y = random.normal(0, 0.1, len(df_enc))
    encoder = DecisionTreeEncoder(regression=True, random_state=random)
    encoder.fit(df_enc[["var_A", "var_B"]], y)
    X = encoder.transform(df_enc[["var_A", "var_B"]])

    transf_df = df_enc.copy()
    transf_df["var_A"] = ([0.034348] * 6 + [-0.024679] * 10 + [-0.075473] * 4
                          )  # Tree: var_A <= 1.5 -> 0.25 else 0.5
    transf_df["var_B"] = [0.044806] * 10 + [-0.079066] * 10
    pd.testing.assert_frame_equal(X.round(6), transf_df[["var_A", "var_B"]])
示例#5
0
def test_transform_raises_error_if_df_contains_na(df_enc, df_enc_na):
    # test case 4: when dataset contains na, transform method
    with pytest.raises(ValueError):
        encoder = DecisionTreeEncoder()
        encoder.fit(df_enc_na[["var_A", "var_B"]], df_enc_na["target"])
        encoder.transform(df_enc_na)
示例#6
0
def test_fit_raises_error_if_df_contains_na(df_enc_na):
    # test case 4: when dataset contains na, fit method
    with pytest.raises(ValueError):
        encoder = DecisionTreeEncoder()
        encoder.fit(df_enc_na)
示例#7
0
def test_non_fitted_error(df_enc):
    with pytest.raises(NotFittedError):
        encoder = DecisionTreeEncoder()
        encoder.transform(df_enc)
    MeanMedianImputer(),
    ArbitraryNumberImputer(),
    CategoricalImputer(fill_value=0, ignore_format=True),
    EndTailImputer(),
    AddMissingIndicator(),
    RandomSampleImputer(),
    DropMissingData(),
])
def test_sklearn_compatible_imputer(estimator, check):
    check(estimator)


# encoding
@parametrize_with_checks([
    CountFrequencyEncoder(ignore_format=True),
    DecisionTreeEncoder(regression=False, ignore_format=True),
    MeanEncoder(ignore_format=True),
    OneHotEncoder(ignore_format=True),
    OrdinalEncoder(ignore_format=True),
    RareLabelEncoder(
        tol=0.00000000001,
        n_categories=100000000000,
        replace_with=10,
        ignore_format=True,
    ),
    WoEEncoder(ignore_format=True),
    PRatioEncoder(ignore_format=True),
])
def test_sklearn_compatible_encoder(estimator, check):
    check(estimator)
示例#9
0
    CountFrequencyEncoder,
    DecisionTreeEncoder,
    MeanEncoder,
    OneHotEncoder,
    OrdinalEncoder,
    PRatioEncoder,
    RareLabelEncoder,
    WoEEncoder,
)


@pytest.mark.parametrize(
    "Estimator",
    [
        CountFrequencyEncoder(ignore_format=True),
        DecisionTreeEncoder(ignore_format=True),
        MeanEncoder(ignore_format=True),
        OneHotEncoder(ignore_format=True),
        OrdinalEncoder(ignore_format=True),
        RareLabelEncoder(
            tol=0.00000000001,
            n_categories=100000000000,
            replace_with=10,
            ignore_format=True,
        ),
        WoEEncoder(ignore_format=True),
        PRatioEncoder(ignore_format=True),
    ],
)
def test_all_transformers(Estimator):
    return check_estimator(Estimator)
def test_fit_raises_error_if_df_contains_na(df_enc_na):
    # test case 4: when dataset contains na, fit method
    with pytest.raises(ValueError):
        encoder = DecisionTreeEncoder(regression=False)
        encoder.fit(df_enc_na[["var_A", "var_B"]], df_enc_na["target"])
def test_error_when_regression_is_false_and_target_is_continuous(df_enc):
    random = np.random.RandomState(42)
    y = random.normal(0, 10, len(df_enc))
    with pytest.raises(ValueError):
        encoder = DecisionTreeEncoder(regression=False)
        encoder.fit(df_enc[["var_A", "var_B"]], y)
def test_error_when_regression_is_true_and_target_is_binary(df_enc):
    with pytest.raises(ValueError):
        encoder = DecisionTreeEncoder(regression=True)
        encoder.fit(df_enc[["var_A", "var_B"]], df_enc["target"])