def spectral_rolloff(data): return feature_extraction.spectral_rolloff(data, 0.9)
def reload_and_feature(picall, feature_type, average, nmel, order_frft, nmfcc, saveprojectpath, savedata, savepic, savetestdata, savepreprocess, savefeature, path, downsample_rate, frame_time, frame_length, frame_overlap, test_rate): ''' fe.stft, # 0 fe.zero_crossing_rate, # 1 fe.energy, # 2 fe.entropy_of_energy, # 3 fe.spectral_centroid_spread, # 4 fe.spectral_entropy, # 5 fe.spectral_flux, # 6 fe.spectral_rolloff, # 7 fe.bandwidth, # 8 fe.mfccs, # 9 fe.rms # 10 fe.stfrft # 11 fe.frft_mfcc # 12 ''' labelname = os.listdir(path) # 获取该数据集路径下的子文件名 if not os.path.exists(savefeature): os.mkdir(savefeature) # 创建保存特征结果的文件 for i in range(len(labelname)): if not os.path.exists(savefeature + '\\' + labelname[i]): os.mkdir(savefeature + '\\' + labelname[i]) datafile = open(savepreprocess, encoding='utf-8') # 读取预处理结果 csv_reader = csv.reader(datafile) # 以这种方式读取文件得到的结果是一个迭代器 feature_set = [] # 当使用统计量作为特征时,将所有样本的特征缓存入该变量以进行归一化 for row in csv_reader: # row中的元素是字符类型 time_series = np.array(row[2:]).astype( 'float32') # row的前两个元素分别是标签和对应文件次序 ####################################################################### frames = preprocessing.frame(time_series, frame_length, frame_overlap) # 分帧 f, t, stft = fe.stft(time_series, pic=None, fs=downsample_rate, nperseg=frame_length, noverlap=frame_length - frame_overlap, nfft=8192, boundary=None, padded=False) # if stft.shape[1] != frames.shape[1]: # 防止stft的时间个数和帧的个数不一样 # dim = min(stft.shape[1], frames.shape[1]) # stft = stft[:, 0:dim] # frames = frames[:, 0:dim] # Mel = lib.feature.melspectrogram(S=np.abs(stft), sr=downsample_rate, n_fft=2*(stft.shape[0]-1), n_mels=512) feature_list = [] # 用于存放各种类型的特征,每个帧对应一个特征向量,其元素分别是每种类型的特征 if picall: # 用于绘图控制 pic = savepic + '\\' + row[0] + '_' + row[1] else: pic = None for i in feature_type: if i == 0: feature0 = np.abs(stft) feature_list.append(feature0) elif i == 1: feature1 = fe.zero_crossing_rate(frames, pic=pic) feature_list.append(feature1) elif i == 2: feature2 = fe.energy(frames, pic=pic) feature_list.append(feature2) elif i == 3: feature3 = fe.entropy_of_energy(frames, pic=pic) feature_list.append(feature3) elif i == 4: feature4, feature41 = fe.spectral_centroid_spread( stft, downsample_rate, pic=pic) feature_list.append(feature4) feature_list.append(feature41) elif i == 5: feature5 = fe.spectral_entropy(stft, pic=pic) feature_list.append(feature5) elif i == 6: feature6 = fe.spectral_flux(stft, pic=pic) feature_list.append(feature6) elif i == 7: feature7 = fe.spectral_rolloff(stft, 0.85, downsample_rate, pic=pic) feature_list.append(feature7) elif i == 8: feature8 = fe.bandwidth(stft, f, pic=pic) feature_list.append(feature8) elif i == 9: feature9 = fe.mfccs( X=stft, fs=downsample_rate, # nfft=2*(stft.shape[0]-1), nfft=8192, n_mels=nmel, n_mfcc=nmfcc, pic=pic) feature_list.append(feature9) elif i == 10: feature10 = fe.rms(stft, pic=pic) feature_list.append(feature10) elif i == 11: feature11 = fe.stfrft(frames, p=order_frft[int(row[0])], pic=pic) feature_list.append(feature11) elif i == 12: tmp = fe.stfrft(frames, p=order_frft[int(row[0])]) feature12 = fe.frft_MFCC(S=tmp, fs=downsample_rate, n_mfcc=nmfcc, n_mels=nmel, pic=pic) feature_list.append(feature12) elif i == 13: feature13, feature13_ = fe.fundalmental_freq( frames=frames, fs=downsample_rate, pic=pic) feature_list.append(feature13) elif i == 14: feature14 = fe.chroma_stft(S=stft, n_chroma=12, A440=440.0, ctroct=5.0, octwidth=2, base_c=True, norm=2) feature_list.append(feature14) elif i == 15: feature15 = fe.log_attack_time(x=time_series, lower_ratio=0.02, upper_ratio=0.99, fs=downsample_rate, n=frames.shape[1]) feature_list.append(feature15) elif i == 16: feature16 = fe.temoporal_centroid(S=stft, hop_length=frame_overlap, fs=downsample_rate) feature_list.append(feature16) elif i == 17: # harm_freq, harm_mag = fe.harmonics(nfft=8192, nht=0.15, f=f, S=stft, fs=downsample_rate, fmin=50, fmax=500, threshold=0.2) # hsc = fe.harmonic_spectral_centroid(harm_freq, harm_mag) # hsd = fe.harmonic_spectral_deviation(harm_mag) # hss = fe.harmonic_spectral_spread(hsc, harm_freq, harm_mag) # hsv = fe.harmonic_spectral_variation(harm_mag) # feature17 = np.concatenate([hsc, hsd, hss, hsv], axis=0) # feature_list.append(feature17) harm_freq, harm_mag = timbral.harmonics(frames=frames, fs=downsample_rate, S=stft, f=f, nfft=8192, fmin=50, fmax=500, nht=0.15) hsc = timbral.harmonic_spectral_centroid(harm_freq, harm_mag) hsd = timbral.harmonic_spectral_deviation(harm_mag) hss = timbral.harmonic_spectral_spread(hsc, harm_freq, harm_mag) hsv = timbral.harmonic_spectral_variation(harm_mag) feature17 = np.concatenate([hsc, hsd, hss, hsv], axis=0) feature_list.append(feature17) elif i == 18: feature18 = fe.pitches_mag_CDSV(f=f, S=stft, fs=downsample_rate, fmin=50, fmax=downsample_rate / 2, threshold=0.2) feature_list.append(feature18) elif i == 19: feature19 = fe.delta_features(feature9, order=1) feature_list.append(feature19) elif i == 20: feature20 = fe.delta_features(feature9, order=2) feature_list.append(feature20) features = np.concatenate([j for j in feature_list], axis=0) # 我很欣赏这一句代码,将各种特征拼在一起 long = list(range(features.shape[1])) # 删除含有nan的帧 for t in long[::-1]: if np.isnan(features[:, t]).any(): features = np.delete(features, t, 1) if average: # 使用统计量作为特征 mean = np.mean(features, axis=1).reshape( 1, features.shape[0]) # 原来的特征向量是列向量,这里转成行向量 var = np.var(features, axis=1).reshape(1, features.shape[0]) # std = np.std(features, axis=1).reshape(1, features.shape[0]) # ske = np.zeros((1, features.shape[0])) # kur = np.zeros((1, features.shape[0])) # for n in range(features.shape[0]): # ske[0, i] = sts.skewness(features[i, :]) # kur[0, i] = sts.kurtosis(features[i, :]) features = np.concatenate([ mean, var, np.array([int(row[0]), int(row[1])]).reshape(1, 2) ], axis=1) # 使用统计平均代替每个帧的特征 feature_set.append(features) else: scale = StandardScaler().fit(features) features = scale.transform(features) # 进行归一化 csv_path = savefeature + '\\' + labelname[int( row[0])] + '\\' + row[0] + '_' + row[1] + '.csv' with open(csv_path, 'w', encoding='utf-8', newline='') as csvfile: csv_writer = csv.writer(csvfile) buffer = np.concatenate([ features.T, int(row[0]) * np.ones((features.shape[1], 1)), int(row[1]) * np.ones((features.shape[1], 1)) ], axis=1) csv_writer.writerows(buffer) print('featuring:', row[0], row[1]) datafile.close() # 关闭文件,避免不必要的错误 if average: # 使用统计量作为特征 features = np.concatenate([k for k in feature_set], axis=0) # 我很欣赏这一句代码 行表示样本数,列表示特征数 tmp = features[:, -2:] # 防止归一化的时候把标签也归一化 features = features[:, 0:-2] scale = StandardScaler().fit(features) features = scale.transform(features) # 进行归一化 features = np.concatenate([features, tmp], axis=1) # 把之前分开的特征和标签拼在一起 for k in range(features.shape[0]): csv_path = savefeature + '\\' + labelname[int(features[k, -2])] + \ '\\' + str(int(features[k, -2])) + '_' + str(int(features[k, -1])) + '.csv' with open(csv_path, 'w', encoding='utf-8', newline='') as csvfile: csv_writer = csv.writer(csvfile) # 每个音频文件只有一个特征向量,并存入一个csv文件 csv_writer.writerow(features[k, :]) # 注意这里写入的是一行,要用writerow
pic=None, fs=fs, nperseg=frame_length, noverlap=frame_length - frame_lap, nfft=8192, boundary=None, padded=False) pic = None feature1 = fe.zero_crossing_rate(frames, pic=pic) feature2 = fe.energy(frames, pic=pic) feature3 = fe.entropy_of_energy(frames, pic=pic) feature4, feature41 = fe.spectral_centroid_spread(stft, fs, pic=pic) feature5 = fe.spectral_entropy(stft, pic=pic) feature6 = fe.spectral_flux(stft, pic=pic) feature7 = fe.spectral_rolloff(stft, 0.85, fs, pic=pic) feature8 = fe.bandwidth(stft, f, pic=pic) feature9 = fe.mfccs(X=stft, fs=fs, nfft=8192, n_mels=128, n_mfcc=13, pic=pic) feature10 = fe.rms(stft, pic=pic) feature11 = fe.stfrft(frames, p=0.95, pic=pic) tmp = fe.stfrft(frames, p=0.95) feature12 = fe.frft_MFCC(S=tmp, fs=fs, n_mfcc=13, n_mels=128, pic=pic) feature19 = fe.delta_features(feature9, order=1) feature20 = fe.delta_features(feature9, order=2) plt.figure() ax1 = plt.subplot(411) plt.plot(data) ax1.set_ylabel('original signal') ax2 = plt.subplot(412) plt.plot(feature1[0, :])