示例#1
0
        network_name=args.network_name,
        checkpoint_path=args.checkpoint,
        batch_size=args.batch_size,
        num_classes=args.num_classes,
        preproc_func_name=args.preproc_func,
        preproc_threads=args.num_preproc_threads)

    # Print the network summary, use these layer names for feature extraction
    #feature_extractor.print_network_summary()

    # Feature extraction example using a filename queue to feed images
    feature_dataset = feature_extraction_queue(feature_extractor,
                                               args.image_path, layer_names,
                                               args.batch_size,
                                               args.num_classes)

    #    print(type(feature_dataset))
    #   for i in feature_dataset:
    #      print(i)

    data = feature_dataset['resnet_v2_101/logits']
    data = np.reshape(data, [data.shape[0], data.shape[3]])

    np.save(args.out_file, data)
    # Write features to disk as HDF5 file
    utils.write_hdf5('features.h5', layer_names, feature_dataset)
    print("Successfully written features to: {}".format(args.out_file))

    # Close the threads and close session.
    feature_extractor.close()
    print("Finished.")
示例#2
0
            label3 = label2.split('_')

            # Get the features for this label.
            temp = features[index_label]
            temp0 = np.append(temp, int(label3[0]) - 1)   # category
            temp1 = np.append(temp0, int(label3[1]) - 1)  # object class
            temp2 = np.append(temp1, label3[2])  # session
            temp3 = np.append(temp2, label3[3][:-4])  # image id within the object class
            features_array[index_label] = temp3

        feature_dataset[layer_names[0]] = features_array

    # End: Modifications (Vadym Gryshchuk).

    # Write features to disk as HDF5 file
    utils.write_hdf5(args.out_file, layer_names, feature_dataset)
    print("Successfully written features to: {}".format(args.out_file))

    # Close the threads and close session.
    feature_extractor.close()
    print("Finished.")

    # Start: Modifications (Vadym Gryshchuk).

    f = h5py.File(args.out_file, 'r')
    dataset = f[args.layer_names][...]

    np.savetxt(args.out_features_file, dataset, delimiter=',')
    np.save
    print("Features are written also to: {}".format(args.out_features_file))
    print("Done.")