def transform(self, X): result = [] for x in X: event = array2json(x) result.append(self.stream.transform(event)) return result
def fit(self, X, y=None, headers=None, verbose=False): X = array2d(X) if (X.ndim != 2): raise ValueError('X must have dimension 2, ndim='+X.ndim) # n_samples, self.n_features_ = X.shape y = np.atleast_1d(y) # y = y.astype(DOUBLE) if self.target is not None: if y is None: y = [None]*len(X) if (len(y) != len(X)): raise ValueError('y must be same shape as X, len(X)='+str(len(X))+', len(y)='+str(len(y))) if headers is not None: if (len(headers) != len(X)): raise ValueError('headers must be same shape as X, len(X)='+str(len(X))+', len(headers)='+str(len(headers))) for x,t in zip(X,y): if verbose: print x,t event = array2json(x,headers) if self.target is not None: event[self.target] = t self.stream.train(event)
def predict(self, X): result = [] for x in X: event = array2json(x) # should this be a numpy type? result.append(float(self.stream.predict(event)['prediction'])) return result