示例#1
0
 def precision(self, labels, pred_scores):
     """
     Compute the precision
     Parameters
     ----------
     labels: value list. The labels of data set.
     pred_scores: pred_scores: value list. The predict results of model. It should be corresponding to labels each data.
     thresholds: value list. This parameter effective only for 'binary'. The predict scores will be 1 if it larger than thresholds, if not,
                 if will be 0. If not only one threshold in it, it will return several results according to the thresholds. default None
     result_filter: value list. If result_filter is not None, it will filter the label results not in result_filter.
     Returns
     ----------
     dict
         The key is threshold and the value is another dic, which key is label in parameter labels, and value is the label's precision.
     """
     if self.eval_type == consts.BINARY:
         precision_operator = classification_metric.BiClassPrecision()
         metric_scores, score_threshold, cuts = precision_operator.compute(
             labels, pred_scores)
         return metric_scores, cuts, score_threshold
     elif self.eval_type == consts.MULTY:
         precision_operator = classification_metric.MultiClassPrecision()
         return precision_operator.compute(labels, pred_scores)
     else:
         logging.warning("error:can not find classification type:{}".format(
             self.eval_type))
 def quantile_pr(self, labels, pred_scores):
     if self.eval_type == consts.BINARY:
         p = classification_metric.BiClassPrecision(cut_method='quantile', remove_duplicate=False)
         r = classification_metric.BiClassRecall(cut_method='quantile', remove_duplicate=False)
         p_scores, score_threshold, cuts = p.compute(labels, pred_scores)
         r_scores, score_threshold, cuts = r.compute(labels, pred_scores)
         p_scores = list(map(list, np.flip(p_scores, axis=0)))
         r_scores = list(map(list, np.flip(r_scores, axis=0)))
         score_threshold = list(np.flip(score_threshold))
         return p_scores, r_scores, score_threshold
     else:
         logging.warning('error: pr quantile is for binary classification only')
示例#3
0
from federatedml.evaluation.metrics.classification_metric \
    import BiClassAccuracy, BiClassRecall, BiClassPrecision, KS, Lift, Gain, FScore

from federatedml.evaluation.metric_interface import MetricInterface

from federatedml.evaluation.metrics import classification_metric

import numpy as np

from federatedml.evaluation.backup.evaluation import BiClassPrecision as BiClassPrecision2

scores = np.random.random(100)
labels = (scores > 0.5) + 0

interface = MetricInterface(1, 'binary')
mat = interface.confusion_mat(labels, scores)

rs = classification_metric.ThresholdCutter.cut_by_quantile(scores, )
rs2 = classification_metric.BiClassRecall(cut_method='quantile').compute(
    labels, scores)
rs3 = classification_metric.BiClassPrecision(cut_method='quantile').compute(
    labels, scores)

rs4 = BiClassPrecision2().compute(labels, scores, rs2[1])

comp1 = [i[1] for i in rs3[0]]
comp2 = [i[1] for i in rs4[0]]

print(comp1 == comp2)