def _get_meta(self): # col_list = [str(x) for x in self.cols] transform_param = feature_binning_meta_pb2.TransformMeta( transform_cols=self.bin_inner_param.transform_bin_indexes, transform_type=self.model_param.transform_param.transform_type) meta_protobuf_obj = feature_binning_meta_pb2.FeatureBinningMeta( method=self.model_param.method, compress_thres=self.model_param.compress_thres, head_size=self.model_param.head_size, error=self.model_param.error, bin_num=self.model_param.bin_num, cols=self.bin_inner_param.bin_names, adjustment_factor=self.model_param.adjustment_factor, local_only=self.model_param.local_only, need_run=self.need_run, transform_param=transform_param) return meta_protobuf_obj
def _get_meta(self): col_list = [str(x) for x in self.cols] LOGGER.debug("In get_meta, transform_cols_idx: {}".format( self.transform_cols_idx)) if not isinstance(self.transform_cols_idx, (list, tuple)): self.transform_cols_idx = [] transform_param = feature_binning_meta_pb2.TransformMeta( transform_cols=self.transform_cols_idx, transform_type=self.model_param.transform_param.transform_type) meta_protobuf_obj = feature_binning_meta_pb2.FeatureBinningMeta( method=self.model_param.method, compress_thres=self.model_param.compress_thres, head_size=self.model_param.head_size, error=self.model_param.error, bin_num=self.model_param.bin_num, cols=col_list, adjustment_factor=self.model_param.adjustment_factor, local_only=self.model_param.local_only, need_run=self.need_run, transform_param=transform_param) return meta_protobuf_obj