示例#1
0
    def _make_selection_obj(self, data_table):
        statistics_param = StatisticsParam(statistics="summary")
        statistics_param.check()
        print(statistics_param.statistics)
        test_obj = DataStatistics()

        test_obj.model_param = statistics_param
        test_obj._init_model(statistics_param)
        test_obj.fit(data_table)

        adapter = adapter_factory(consts.STATISTIC_MODEL)
        meta_obj = test_obj.export_model()['StatisticMeta']
        param_obj = test_obj.export_model()['StatisticParam']

        iso_model = adapter.convert(meta_obj, param_obj)
        selection_obj = BaseHeteroFeatureSelection()
        selection_obj.isometric_models = {consts.STATISTIC_MODEL: iso_model}
        return selection_obj
示例#2
0
 def test_something(self):
     statistics_param = StatisticsParam(statistics="summary")
     statistics_param.check()
     print(statistics_param.statistics)
     test_data = self.gen_data(1000, 16)
     test_obj = DataStatistics()
     test_obj.model_param = statistics_param
     test_obj._init_model(statistics_param)
     test_obj.fit(test_data)
     static_result = test_obj.summary()
     stat_res_1 = static_result[self.header[0]]
     self.assertTrue(self._float_equal(stat_res_1['sum'], np.sum(self.col_1)))
     self.assertTrue(self._float_equal(stat_res_1['max'], np.max(self.col_1)))
     self.assertTrue(self._float_equal(stat_res_1['mean'], np.mean(self.col_1)))
     self.assertTrue(self._float_equal(stat_res_1['stddev'], np.std(self.col_1)))
     self.assertTrue(self._float_equal(stat_res_1['min'], np.min(self.col_1)))