def Piola1(d_, w_, lambda_, mu_s, E_func=None): I = Identity(2) if callable(E_func): E = E_func(d_, w_) else: F = I + grad(d_["n"]) E = 0.5 * ((F.T * F) - I) return F * (lambda_ * tr(E) * I + 2 * mu_s * E)
def _solve(self, z, x=None): # problem variables du = TrialFunction(self.V) # incremental displacement v = TestFunction(self.V) # test function u = Function(self.V) # displacement from previous iteration # kinematics ii = Identity(3) # identity tensor dimension 3 f = ii + grad(u) # deformation gradient c = f.T * f # right Cauchy-Green tensor # invariants of deformation tensors ic = tr(c) j = det(f) # elasticity parameters if type(z) in [list, np.ndarray]: param = self.param_remapper(z[0]) if self.param_remapper is not None else z[0] else: param = self.param_remapper(z) if self.param_remapper is not None else z e_var = variable(Constant(param)) # Young's modulus nu = Constant(.3) # Shear modulus (Lamè's second parameter) mu, lmbda = e_var / (2 * (1 + nu)), e_var * nu / ((1 + nu) * (1 - 2 * nu)) # strain energy density, total potential energy psi = (mu / 2) * (ic - 3) - mu * ln(j) + (lmbda / 2) * (ln(j)) ** 2 pi = psi * dx - self.time * dot(self.f, u) * self.ds(3) ff = derivative(pi, u, v) # compute first variation of pi jj = derivative(ff, u, du) # compute jacobian of f # solving if x is not None: numeric_evals = np.zeros(shape=(x.shape[1], len(self.times))) evals = np.zeros(shape=(x.shape[1], len(self.eval_times))) else: numeric_evals = None evals = None for it, t in enumerate(self.times): self.time.t = t self.solver(ff == 0, u, self.bcs, J=jj, bcs=self.bcs, solver_parameters=self.solver_parameters) if x is not None: numeric_evals[:, it] = np.log(np.array([-u(x_)[2] for x_ in x.T]).T) # time-interpolation if x is not None: for i in range(evals.shape[0]): evals[i, :] = np.interp(self.eval_times, self.times, numeric_evals[i, :]) return (evals, u) if x is not None else u
def sigma(u): return lambda_ * nabla_div(u) * Identity(dim) + 2 * mu * epsilon(u)
def F_(U): I = Identity(U.ufl_shape[0]) return (I + grad(U))
def ab_on_F(d_, w_, k): F1 = grad(1.5 * d_["n-1"] - 0.5 * d_["n-2"]) - Identity(2) F2 = 0.5 * grad(d_["n"] + d_["n-1"]) E = F1.T * F2 - I return 0.5 * E