def solve(self, **arguments): t_start = time.clock() # definig Function space on this mesh using Lagrange #polynoimals of degree 1. H = FunctionSpace(self.mesh, "CG", 1) # Setting up the variational problem v = TrialFunction(H) w = TestFunction(H) coeff_dx2 = Constant(1) coeff_v = Constant(1) f = Expression("(4*pow(pi,2))*exp(-(1/coeff_v)*t)*sin(2*pi*x[0])", {'coeff_v': coeff_v}, degree=2) v0 = Expression("sin(2*pi*x[0])", degree=2) f.t = 0 def boundary(x, on_boundary): return on_boundary bc = DirichletBC(H, v0, boundary) v1 = interpolate(v0, H) dt = self.steps.time a = (dt * inner(grad(v), grad(w)) + dt * coeff_v * inner(v, w)) * dx L = (f * dt - coeff_v * v1) * w * dx A = assemble(a) v = Function(H) T = self.domain.time[-1] t = dt # solving the variational problem. while t <= T: b = assemble(L, tensor=b) vo.t = t bc.apply(A, b) solve(A, v.vector(), b) t += dt v1.assign(v) self.solution.extend(v.vector().array()) return [self.solution, time.clock() - t_start]
def solve(self, **arguments): t_start = time.clock() # definig Function space on this mesh using Lagrange #polynoimals of degree 1. H = FunctionSpace(self.mesh, "CG", 1) # Setting up the variational problem v = TrialFunction(H) w = TestFunction(H) epsilon = Constant(arguments[Components().Diffusion]) f = Expression("(1 - epsilon*4*pow(pi,2))*cos(2*pi*x[0])",\ epsilon=epsilon, degree=1) a = (epsilon * inner(grad(v), grad(w)) + inner(v, w)) * dx L = f * w * dx # solving the variational problem. v = Function(H) solve(a == L, v) self.solution.extend(v.vector().array()) return [self.solution, time.clock() - t_start]
def solve(self, **arguments): t_start = time.clock() # definig Function space on this mesh using Lagrange #polynoimals of degree 1. H = FunctionSpace(self.mesh, "CG", 1) # Setting up the variational problem v = TrialFunction(H) w = TestFunction(H) epsilon = Constant(arguments[Components().Diffusion]) f = Constant(0) a = (epsilon * inner(grad(v), grad(w)) + inner(v, w)) * dx #Still have to figure it how to use a Neumann Condition here L = f * w * dx # solving the variational problem. v = Function(H) solve(a == L, v) self.solution.extend(v.vector().array()) return [self.solution, time.clock() - t_start]