if spectrogram: # plot spec figFT = plt.figure('scan_{0:03}_{1}_d{2}_SG_{3}'.format( run, dev, d, i)) print(T_d[0], T_d[-1]) slide_step = Td #in fs FWHM_slide = 20.0 #in fs t_lim = data_window slide_positions = np.arange(T_d[0], T_d[-1], slide_step) S = np.zeros((np.size(T_d), np.size(wn))) i = 0 for slide_pos in slide_positions: Z_slide = fk.slide_window( T_d, Z, slide_pos, FWHM_slide ) # multiply gaussian onto data set which is centered at current sliding position wn, DFT_slide = fk.DFT( T_d, Z_slide, Td, l_ref, harmonic, zeroPaddingFactor=2 ) # FFT of interferogram which has been truncated by mulitplying wiht gaussian # add DFT to spectrum-matrix while weighting with temporal gaussian envelope # for i in range(np.size(T_d)): # S[i,:] += abs(DFT_slide)/max(abs(DFT_slide))*fk.weighting_coeff(T_d[i], slide_pos, FWHM_slide) S[i, :] += abs(DFT_slide) / max(abs(DFT_slide)) i += 1 S[:, :] /= np.size(slide_positions) fk.plot_spectrogram(figFT, wn, T_d, S, l_fel, wn_lim, t_lim) # plt.show() if not interactive_plots: plt.close('all') else: plt.show()
for slide_pos in slide_positions: Z_slide = fk.slide_window( delay, Z, slide_pos, FWHM_slide ) # multiply gaussian onto data set which is centered at current sliding position wn, DFT_slide = fk.DFT( T_d, Z_slide, Td, l_ref, harmonic, zeroPaddingFactor=zeroPaddingFactor ) # FFT of interferogram which has been truncated by mulitplying wiht gaussian S[i, :] += abs(DFT_slide) / max(abs(DFT_slide)) i += 1 S[:, :] /= np.size(slide_positions) fk.plot_spectrogram(figFT, wn, delay, S, l_fel / 5., l_trans, wn_lim_s, data_window) plt.tight_layout() if not interactive_plots: plt.close('all') else: plt.show() #i0_list = [i0_0H,i0_1H,i0_2H,i0_3H,i0_4H,i0_5H,i0_0H+i0_1H+i0_2H+i0_3H+i0_4H+i0_5H] #for ii in i0_list: # plt.plot(delay,ii) # plt.xlabel('delay [fs]') # plt.ylabel('i0 [a.u.]') #plt.legend(['0H','1H','2H','3H','4H','5H','sum']) #
slide_step = Td #in fs FWHM_slide = 20.0 #in fs t_lim = data_window slide_positions = np.arange(delay[0],delay[-1], slide_step) S = np.zeros((np.size(delay), np.size(wn))) i = 0 for slide_pos in slide_positions: Z_slide = fk.slide_window(delay, Z, slide_pos, FWHM_slide) # multiply gaussian onto data set which is centered at current sliding position wn, DFT_slide = fk.DFT(delay, Z_slide, Td, l_ref, harmonic, zeroPaddingFactor = zeroPaddingFactor) # FFT of interferogram which has been truncated by mulitplying wiht gaussian # add DFT to spectrum-matrix while weighting with temporal gaussian envelope # for i in range(np.size(T_d)): # S[i,:] += abs(DFT_slide)/max(abs(DFT_slide))*fk.weighting_coeff(T_d[i], slide_pos, FWHM_slide) S[i,:] += abs(DFT_slide)/max(abs(DFT_slide)) i += 1 S[:,:] /= np.size(slide_positions) fk.plot_spectrogram(figFT, wn, delay, S, l_fel/6., 1E7/l_trans, wn_lim_s, t_lim) # plt.show() #print delay #figTD = plt.figure("zoom",figsize=(7,6)) # #ax = figTD.add_subplot(111) ##ax.errorbar(delay, X, yerr=X_s, color='b', linestyle='') #ax.plot(delay, Z.real, 'o-', color='b') #ax.plot(delay, Z.imag, 'o-', color='g') #ax.plot(Ttheo, Xt*0.34, 'b', alpha=0.3) #ax.legend(['real','imag','real_theo']) #ax.set_xlim(-20,20)
S = np.zeros((np.size(T_d), np.size(wn))) i = 0 for slide_pos in slide_positions: Z_slide = fk.slide_window( T_d, Z, slide_pos, FWHM_slide ) # multiply gaussian onto data set which is centered at current sliding position wn, DFT_slide = fk.DFT( T_d, Z_slide, Td, l_ref, harmonic, zeroPaddingFactor=2 ) # FFT of interferogram which has been truncated by mulitplying wiht gaussian # add DFT to spectrum-matrix while weighting with temporal gaussian envelope # for i in range(np.size(T_d)): # S[i,:] += abs(DFT_slide)/max(abs(DFT_slide))*fk.weighting_coeff(T_d[i], slide_pos, FWHM_slide) S[i, :] += abs(DFT_slide) / max(abs(DFT_slide)) i += 1 S[:, :] /= np.size(slide_positions) fk.plot_spectrogram(figFT, wn, T_d, S, l_fel / 5, l_trans, wn_lim, t_lim) # plt.show() if not interactive_plots: plt.close('all') else: plt.show() #''' Plots for Paper ''' #ticksize= 2. #ticklength = 5. #fontsize=16. #plt.rcParams['xtick.labelsize'] = fontsize #plt.rcParams['ytick.labelsize'] = fontsize #plt.rcParams['axes.labelsize'] = fontsize #plt.rcParams['xtick.major.width'] = ticksize