def main(): usage = "usage: %(prog)s [config file]" description = "Run fermipy analysis chain." parser = argparse.ArgumentParser(usage=usage,description=description) parser.add_argument('--config', default = 'sample_config.yaml') parser.add_argument('--source', default = None) args = parser.parse_args() gta = GTAnalysis(args.config) if args.source is None: src_name = gta.roi.sources[0].name gta.setup() gta.optimize() if (gta.roi[src_name]['ts'] > 1000. and gta.roi[src_name]['SpectrumType'] == 'PowerLaw'): gta.set_source_spectrum(src_name, spectrum_type='LogParabola', spectrum_pars={'beta' : {'value' : 0.0, 'scale' : 1.0, 'min' : 0.0, 'max' : 2.0}}) gta.free_source(src_name) gta.fit() gta.free_source(src_name, False) loc = gta.localize(src_name, free_radius=1.0, update=True, make_plots=True) model = {'Index' : 2.0, 'SpatialModel' : 'PointSource'} srcs = gta.find_sources(model=model, sqrt_ts_threshold=5.0, min_separation=0.5) sed = gta.sed(src_name, free_radius=1.0, make_plots=True) gta.tsmap(make_plots=True) gta.tsmap(prefix='excludeSource', exclude=[src_name], make_plots=True) gta.write_roi('fit0') lc = gta.lightcurve(src_name, binsz=86400.*28.0, free_radius=3.0, use_scaled_srcmap=True, multithread=False)
def run_analysis(config): print('Running analysis...') gta = GTAnalysis(config) gta.setup() gta.optimize() gta.print_roi() # Localize and generate SED for first source in ROI srcname = gta.roi.sources[0].name gta.free_source(srcname) gta.fit() gta.localize(srcname) gta.sed(srcname) gta.write_roi('roi', make_plots=True) gta.tsmap(make_plots=True) gta.residmap(make_plots=True)
gta = GTAnalysis(args.config) gta.setup() # Iteratively optimize all components in the ROI gta.optimize() # Fix sources w/ TS < 10 gta.free_sources(minmax_ts=[None, 10], free=False) # Free sources within 3 degrees of ROI center gta.free_sources(distance=3.0) # Free sources by name gta.free_source('mkn421') gta.free_source('galdiff') gta.free_source('isodiff') # Free only the normalization of a specific source gta.free_norm('3FGL J1129.0+3705') gta.fit() # Compute the SED for a source gta.sed('mkn421') # Write the current state of the ROI model -- this will generate XML # model files for each component as well as an output analysis # dictionary in numpy and yaml formats gta.write_roi('fit1')
gta = GTAnalysis(args.config) gta.setup() # Iteratively optimize all components in the ROI gta.optimize() # Fix sources w/ significance < 10 gta.free_sources(cuts=('Detection_Significance',0,10),free=False) # Free sources within 3 degrees of ROI center gta.free_sources(distance=3.0) # Free sources by name gta.free_source('mkn421') gta.free_source('galdiff') gta.free_source('isodiff') # Free only the normalization of a specific source gta.free_norm('3FGL J1129.0+3705') gta.fit() # Compute the SED for a source gta.sed('mkn421') # Write the current state of the ROI model -- this will generate XML # model files for each component as well as an output analysis # dictionary in numpy and yaml formats gta.write_roi('fit1')
gta = GTAnalysis(args.config, logging={"verbosity": 3}) gta.setup() gta.simulate_roi(restore=True) ext_fit_data = [] halo_fit_data = [] gta.write_roi("base_model", save_model_map=False, make_plots=False) for i in range(1): gta.load_xml("base_model") gta.simulate_roi(randomize=False) gta.free_source("testsource") gta.update_source("testsource") # gta.fit() gta.free_sources(free=False) gta.extension("testsource", width=np.logspace(-2.5, -0.5, 9)) ext_fit_data += [copy.deepcopy(gta.roi["testsource"])] gta.write_roi("fit%04i" % i, save_model_map=False, make_plots=False, format="npy") fit_halo(gta, "fit%04i" % i, "testsource", halo_width, halo_index) np.save(os.path.join(gta._savedir, "ext_fit_data.npy"), ext_fit_data)
##################### #initializing analysis object gta = GTAnalysis('config.yaml',logging={'verbosity': 3}) gta.setup(overwrite = True) #first optimization run with output fit_res = gta.optimize() gta.write_roi('fit_optimize') #free parameters for full likelihood fit gta.free_sources(pars='norm') gta.free_sources(distance = 3.0) gta.free_source('galdiff') gta.free_source('isodiff') #do the likelihood fit fit_results = gta.fit() if fit_results['fit_success']!=True: gta.load_roi('fit_optimize.npy') gta.free_sources(free=False) gta.free_sources(pars='norm', distance = 3.0) gta.free_sources(distance = 1.) gta.free_source('galdiff') gta.free_source('isodiff') fit_res2 = gta.fit() if fit_results['fit_success']!=True: gta.load_roi('fit_optimize.npy')
def _process_lc_bin(itime, name, config, basedir, workdir, diff_sources, const_spectrum, roi, lck_params, **kwargs): i, time = itime roi = copy.deepcopy(roi) config = copy.deepcopy(config) config['selection']['tmin'] = time[0] config['selection']['tmax'] = time[1] # create output directories labeled in MET vals outdir = basedir + 'lightcurve_%.0f_%.0f' % (time[0], time[1]) config['fileio']['outdir'] = os.path.join(workdir, outdir) config['logging']['prefix'] = 'lightcurve_%.0f_%.0f ' % (time[0], time[1]) config['fileio']['logfile'] = os.path.join(config['fileio']['outdir'], 'fermipy.log') utils.mkdir(config['fileio']['outdir']) yaml.dump(utils.tolist(config), open(os.path.join(config['fileio']['outdir'], 'config.yaml'), 'w')) xmlfile = os.path.join(config['fileio']['outdir'], 'base.xml') try: from fermipy.gtanalysis import GTAnalysis gta = GTAnalysis(config, roi, loglevel=logging.DEBUG) gta.logger.info('Fitting time range %i %i' % (time[0], time[1])) gta.setup() except: print('Analysis failed in time range %i %i' % (time[0], time[1])) print(sys.exc_info()[0]) raise return {} gta._lck_params = lck_params # Recompute source map for source of interest and sources within 3 deg if gta.config['gtlike']['use_scaled_srcmap']: names = [s.name for s in gta.roi.get_sources(distance=3.0, skydir=gta.roi[name].skydir) if not s.diffuse] gta.reload_sources(names) # Write the current model gta.write_xml(xmlfile) # Optimize the model gta.optimize(skip=diff_sources, shape_ts_threshold=kwargs.get('shape_ts_threshold')) fit_results = _fit_lc(gta, name, **kwargs) gta.write_xml('fit_model_final.xml') srcmodel = copy.deepcopy(gta.get_src_model(name)) numfree = gta.get_free_param_vector().count(True) max_ts_thresholds = [None, 4, 9] for max_ts in max_ts_thresholds: if max_ts is not None: gta.free_sources(minmax_ts=[None, max_ts], free=False, exclude=[name]) # rerun fit using params from full time (constant) fit using same # param vector as the successful fit to get loglike specname, spectrum = const_spectrum gta.set_source_spectrum(name, spectrum_type=specname, spectrum_pars=spectrum, update_source=False) gta.free_source(name, free=False) const_fit_results = gta.fit() if not const_fit_results['fit_success']: continue const_srcmodel = gta.get_src_model(name) # rerun using shape fixed to full time fit # for the fixed-shape lightcurve gta.free_source(name, pars='norm') fixed_fit_results = gta.fit() if not fixed_fit_results['fit_success']: continue fixed_srcmodel = gta.get_src_model(name) break # special lc output o = {'flux_const': const_srcmodel['flux'], 'loglike_const': const_fit_results['loglike'], 'fit_success': fit_results['fit_success'], 'fit_success_fixed': fixed_fit_results['fit_success'], 'fit_quality': fit_results['fit_quality'], 'fit_status': fit_results['fit_status'], 'num_free_params': numfree, 'config': config} # full flux output if fit_results['fit_success'] == 1: for k in defaults.source_flux_output.keys(): if not k in srcmodel: continue o[k] = srcmodel[k] o[k+'_fixed'] = fixed_srcmodel[k] gta.logger.info('Finished time range %i %i' % (time[0], time[1])) return o
def _process_lc_bin(itime, name, config, basedir, workdir, diff_sources, const_spectrum, roi, lck_params, **kwargs): i, time = itime roi = copy.deepcopy(roi) config = copy.deepcopy(config) config['selection']['tmin'] = time[0] config['selection']['tmax'] = time[1] # create output directories labeled in MET vals outdir = basedir + 'lightcurve_%.0f_%.0f' % (time[0], time[1]) config['fileio']['outdir'] = os.path.join(workdir, outdir) config['logging']['prefix'] = 'lightcurve_%.0f_%.0f ' % (time[0], time[1]) config['fileio']['logfile'] = os.path.join(config['fileio']['outdir'], 'fermipy.log') utils.mkdir(config['fileio']['outdir']) yaml.dump(utils.tolist(config), open(os.path.join(config['fileio']['outdir'], 'config.yaml'), 'w')) xmlfile = os.path.join(config['fileio']['outdir'], 'base.xml') try: from fermipy.gtanalysis import GTAnalysis gta = GTAnalysis(config, roi, loglevel=logging.DEBUG) gta.logger.info('Fitting time range %i %i' % (time[0], time[1])) gta.setup() except: print('Analysis failed in time range %i %i' % (time[0], time[1])) print(sys.exc_info()[0]) raise return {} gta._lck_params = lck_params # Recompute source map for source of interest and sources within 3 deg if gta.config['gtlike']['use_scaled_srcmap']: names = [s.name for s in gta.roi.get_sources(distance=3.0, skydir=gta.roi[name].skydir) if not s.diffuse] gta.reload_sources(names) # Write the current model gta.write_xml(xmlfile) # Optimize the model gta.optimize(skip=diff_sources, shape_ts_threshold=kwargs.get('shape_ts_threshold')) fit_results = _fit_lc(gta, name, **kwargs) gta.write_xml('fit_model_final.xml') srcmodel = copy.deepcopy(gta.get_src_model(name)) numfree = gta.get_free_param_vector().count(True) const_srcmodel = gta.get_src_model(name).copy() fixed_fit_results = fit_results.copy() fixed_srcmodel = gta.get_src_model(name).copy() fixed_fit_results['fit_success'],fixed_srcmodel['fit_success'] = [False,False] fixed_fit_results['fit_quality'],fixed_srcmodel['fit_quality'] = [0,0] max_ts_thresholds = [None, 4, 9, 16, 25] for max_ts in max_ts_thresholds: if max_ts is not None: gta.free_sources(minmax_ts=[None, max_ts], free=False, exclude=[name]) # rerun fit using params from full time (constant) fit using same # param vector as the successful fit to get loglike specname, spectrum = const_spectrum gta.set_source_spectrum(name, spectrum_type=specname, spectrum_pars=spectrum, update_source=False) gta.free_source(name, free=False) const_fit_results = gta.fit() if not const_fit_results['fit_success']: continue const_srcmodel = gta.get_src_model(name) # rerun using shape fixed to full time fit # for the fixed-shape lightcurve gta.free_source(name, pars='norm') fixed_fit_results = gta.fit() if not fixed_fit_results['fit_success']: continue fixed_srcmodel = gta.get_src_model(name) break # special lc output o = {'flux_const': const_srcmodel['flux'], 'loglike_const': const_fit_results['loglike'], 'fit_success': fit_results['fit_success'], 'fit_success_fixed': fixed_fit_results['fit_success'], 'fit_quality': fit_results['fit_quality'], 'fit_status': fit_results['fit_status'], 'num_free_params': numfree, 'config': config} # full flux output if fit_results['fit_success'] == 1: for k in defaults.source_flux_output.keys(): if not k in srcmodel: continue o[k] = srcmodel[k] o[k+'_fixed'] = fixed_srcmodel[k] gta.logger.info('Finished time range %i %i' % (time[0], time[1])) return o
def main(): usage = "usage: %(prog)s [config file]" description = "Run fermipy analysis chain." parser = argparse.ArgumentParser(usage=usage, description=description) parser.add_argument('--config', default='sample_config.yaml') parser.add_argument('--source', default=None) args = parser.parse_args() gta = GTAnalysis(args.config, logging={'verbosity': 3}, fileio={'workdir_regex': '\.xml$|\.npy$'}) model0 = {'SpatialModel': 'PointSource', 'Index': 1.5} model1 = {'SpatialModel': 'PointSource', 'Index': 2.0} model2 = {'SpatialModel': 'PointSource', 'Index': 2.7} src_name = gta.config['selection']['target'] gta.setup(overwrite=True) gta.free_sources(False) gta.print_roi() gta.optimize() gta.print_roi() exclude = [] # Localize all point sources for s in sorted(gta.roi.sources, key=lambda t: t['ts'], reverse=True): # for s in gta.roi.sources: if not s['SpatialModel'] == 'PointSource': continue if s['offset_roi_edge'] > -0.1: continue if s.name in exclude: continue if not '3FGL' in s.name: continue if s.name == src_name: continue gta.localize(s.name, nstep=5, dtheta_max=0.5, update=True, prefix='base', make_plots=True) gta.optimize() gta.print_roi() gta.write_roi('base_roi', make_plots=True) exclude = [src_name] if not 'carina_2' in exclude: exclude += ['carina_2'] if not 'carina_3' in exclude: exclude += ['carina_3'] gta.tsmap('base', model=model0, make_plots=True, exclude=exclude) gta.residmap('base', model=model0, make_plots=True, exclude=exclude) gta.tsmap('base', model=model1, make_plots=True, exclude=exclude) gta.residmap('base', model=model1, make_plots=True, exclude=exclude) gta.tsmap('base', model=model2, make_plots=True, exclude=exclude) gta.residmap('base', model=model2, make_plots=True, exclude=exclude) gta.find_sources(sqrt_ts_threshold=5.0) gta.optimize() gta.print_roi() gta.print_params() gta.free_sources(skydir=gta.roi.skydir, distance=1.0, pars='norm') gta.fit() gta.print_roi() gta.print_params() gta.write_roi('fit0_roi', make_plots=True) m = gta.tsmap('fit0', model=model0, make_plots=True, exclude=exclude) gta.plotter.make_tsmap_plots(m, gta.roi, zoom=2, suffix='tsmap_zoom') gta.residmap('fit0', model=model0, make_plots=True, exclude=exclude) gta.tsmap('fit0', model=model1, make_plots=True, exclude=exclude) gta.plotter.make_tsmap_plots(m, gta.roi, zoom=2, suffix='tsmap_zoom') gta.residmap('fit0', model=model1, make_plots=True, exclude=exclude) gta.tsmap('fit0', model=model2, make_plots=True, exclude=exclude) gta.plotter.make_tsmap_plots(m, gta.roi, zoom=2, suffix='tsmap_zoom') gta.residmap('fit0', model=model2, make_plots=True, exclude=exclude) gta.sed(src_name, prefix='fit0', make_plots=True, free_radius=1.0) gta.free_source(src_name) gta.fit(reoptimize=True) gta.print_roi() gta.print_params() gta.write_roi('fit1_roi', make_plots=True)
def run_analysis(self, argv): """Run this analysis""" args = self._parser.parse_args(argv) if not HAVE_ST: raise RuntimeError( "Trying to run fermipy analysis, but don't have ST") if is_null(args.skydirs): skydir_dict = None else: skydir_dict = load_yaml(args.skydirs) gta = GTAnalysis(args.config, logging={'verbosity': 3}, fileio={'workdir_regex': '\.xml$|\.npy$'}) #gta.setup(overwrite=False) gta.load_roi(args.roi_baseline) gta.print_roi() basedir = os.path.dirname(args.config) # This should be a no-op, b/c it was done in the baseline analysis for profile in args.profiles: if skydir_dict is None: skydir_keys = [None] else: skydir_keys = sorted(skydir_dict.keys()) for skydir_key in skydir_keys: if skydir_key is None: pkey, pdict = AnalyzeSED._build_profile_dict( basedir, profile) else: skydir_val = skydir_dict[skydir_key] pkey, pdict = AnalyzeSED._build_profile_dict( basedir, profile) pdict['ra'] = skydir_val['ra'] pdict['dec'] = skydir_val['dec'] pkey += "_%06i" % skydir_key outfile = "sed_%s.fits" % pkey # Add the source and get the list of correlated soruces correl_dict = add_source_get_correlated(gta, pkey, pdict, correl_thresh=0.25) # Write the list of correlated sources correl_yaml = os.path.join(basedir, "correl_%s.yaml" % pkey) write_yaml(correl_dict, correl_yaml) gta.free_sources(False) for src_name in correl_dict.keys(): gta.free_source(src_name, pars='norm') # build the SED gta.sed(pkey, outfile=outfile, make_plots=args.make_plots) # remove the source gta.delete_source(pkey) # put the ROI back to how it was gta.load_xml(args.roi_baseline) return gta
sqrt_ts_threshold=3 halo_width = np.logspace(-1,0,9) halo_index = np.array([1.5,1.75,2.0,2.25,2.5,2.75,3.0]) model0 = { 'SpatialModel' : 'PointSource', 'Index' : 1.5 } model1 = { 'SpatialModel' : 'PointSource', 'Index' : 2.0 } model2 = { 'SpatialModel' : 'PointSource', 'Index' : 2.5 } src_name = gta.roi.sources[0].name # ----------------------------------- # Get a Baseline Model # ----------------------------------- # Get a reasonable starting point for the spectral model gta.free_source(src_name) gta.fit() gta.free_source(src_name,False) gta.optimize() roiwidth = gta.config['binning']['roiwidth'] # Localize 3FGL sources for s in gta.roi.sources: if not s['SpatialModel'] == 'PointSource': continue if s['offset'] < 0.5 or s['ts'] < 25.: continue
gta.setup() gta.simulate_roi(restore=True) ext_fit_data = [] halo_fit_data = [] gta.write_roi('base_model',save_model_map=False,make_plots=False) for i in range(10): gta.load_xml('base_model') gta.simulate_roi() gta.free_source('testsource') gta.free_source('galdiff',pars='norm') gta.free_source('isodiff',pars='norm') gta.fit() gta.update_source('testsource',reoptimize=True,npts=9) gta.free_sources(free=False) gta.extension('testsource',width=np.logspace(-2.5,-0.5,9)) ext_fit_data += [copy.deepcopy(gta.roi['testsource'])] gta.write_roi('fit%04i'%i,save_model_map=False,make_plots=False, format='npy') fit_halo(gta,'fit%04i'%i,'testsource',halo_width,halo_index)
def run_analysis(self, argv): """Run this analysis""" args = self._parser.parse_args(argv) if not HAVE_ST: raise RuntimeError( "Trying to run fermipy analysis, but don't have ST") if is_null(args.skydirs): skydir_dict = None else: skydir_dict = load_yaml(args.skydirs) gta = GTAnalysis(args.config, logging={'verbosity': 3}, fileio={'workdir_regex': '\.xml$|\.npy$'}) #gta.setup(overwrite=False) gta.load_roi(args.roi_baseline) gta.print_roi() basedir = os.path.dirname(args.config) # This should be a no-op, b/c it was done in the baseline analysis for profile in args.profiles: if skydir_dict is None: skydir_keys = [None] else: skydir_keys = sorted(skydir_dict.keys()) for skydir_key in skydir_keys: if skydir_key is None: pkey, psrc_name, pdict = build_profile_dict(basedir, profile) else: skydir_val = skydir_dict[skydir_key] pkey, psrc_name, pdict = build_profile_dict(basedir, profile) pdict['ra'] = skydir_val['ra'] pdict['dec'] = skydir_val['dec'] pkey += "_%06i" % skydir_key outfile = "sed_%s.fits" % pkey # Add the source and get the list of correlated soruces correl_dict, test_src_name = add_source_get_correlated(gta, psrc_name, pdict, correl_thresh=0.25, non_null_src=args.non_null_src) # Write the list of correlated sources correl_yaml = os.path.join(basedir, "correl_%s.yaml" % pkey) write_yaml(correl_dict, correl_yaml) gta.free_sources(False) for src_name in correl_dict.keys(): gta.free_source(src_name, pars='norm') # build the SED if args.non_null_src: gta.update_source(test_src_name, reoptimize=True) gta.write_roi("base_%s"% pkey, make_plots=False) gta.sed(test_src_name, prefix=pkey, outfile=outfile, make_plots=args.make_plots) # remove the source gta.delete_source(test_src_name) # put the ROI back to how it was gta.load_xml(args.roi_baseline) return gta
def main(cmd_line): #takes integer arguement specifying the simulation number sim = cmd_line[1] indir = "/zfs/astrohe/ckarwin/Machine_Learning_GC/Sim_2/Dame_Maps/" outdir = indir + "Simulation_Output/sim_%s" % sim if (os.path.isdir(outdir) == True): shutil.rmtree(outdir) os.system('mkdir %s' % outdir) os.chdir(outdir) #A single simulation should first be ran, which will generate all the needed data products that can be reused for subsequent simulations. #The data products that are copied below are for subsequent simulations after the first run. shutil.copy2('%s/srcmap_00.fits' % indir, 'srcmap_00.fits') shutil.copy2('%s/bexpmap_00.fits' % indir, 'bexpmap_00.fits') shutil.copy2('%s/ccube_00.fits' % indir, 'ccube_00.fits') shutil.copy2('%s/config.yaml' % indir, 'config.yaml') shutil.copy2('%s/ft1_00.fits' % indir, 'ft1_00.fits') shutil.copy2('%s/LAT_Final_Excess_Template.fits' % indir, 'LAT_Final_Excess_Template.fits') #setup analysis: gta = GTAnalysis('config.yaml', logging={'verbosity': 3}) gta.setup() #gta.load_roi("after_setup") #set components to zero for simulations: gta.set_norm("MapSource", 0.0) #excess template gta.set_norm("galdiff04", 0.0) #CO12_0-5 gta.set_norm("galdiff05", 0.0) #CO12_6-9 gta.set_norm("galdiff06", 0.0) #CO12_10-12 gta.set_norm("galdiff07", 0.0) #CO12_13-16 #run simulations: gta.write_roi('before_sim') gta.simulate_roi(randomize=True) #delete sources that were simulated: gta.delete_source("galdiff00", delete_source_map=False) gta.delete_source("galdiff01", delete_source_map=False) gta.delete_source("galdiff02", delete_source_map=False) gta.delete_source("galdiff03", delete_source_map=False) #set random normalizations of sources for performing fit: #n4 = np.random.normal(1.0,0.2) #n5 = np.random.normal(1.0,0.2) #n6 = np.random.normal(1.0,0.2) #nms = np.random.normal(1e-4,0.5e-4) gta.set_norm("galdiff04", 0.8) gta.set_norm("galdiff05", 0.8) gta.set_norm("galdiff06", 1.2) gta.set_norm("galdiff07", 1.2) #perform fit for null hypothesis: gta.free_sources(free=True) gta.free_source("galdiff07", free=False) gta.free_source("MapSource", free=False) Fit = gta.fit() null = Fit["loglike"] gta.write_roi('after_null_fit') gta.write_model_map("null_model") #set normalizations of sources for performing alternative fit: gta.set_norm("galdiff04", 0.8) gta.set_norm("galdiff05", 0.8) gta.set_norm("galdiff06", 1.2) gta.set_norm("galdiff07", 1.2) gta.set_norm("MapSource", 1e-4) gta.free_sources(free=True) #gta.free_source("galdiff07",free=False) Fit2 = gta.fit() alternative = Fit2["loglike"] gta.write_roi('after_alternative_fit') gta.write_model_map("alternative_model") #calculate source spectrum: ltcube = '/zfs/astrohe/ckarwin/Stacking_Analysis/UFOs/NGC_4151_Analysis/MakeLTCube/zmax_105/UFOs_binned_ltcube.fits' obs = BinnedObs(srcMaps='srcmap_00.fits', expCube=ltcube, binnedExpMap='bexpmap_00.fits', irfs='P8R3_SOURCE_V2') like = BinnedAnalysis(obs, 'after_alternative_fit_00.xml', optimizer='MINUIT') Elist, Flist = CalcFlux(like, 'MapSource') data = {"energ[MeV]": Elist, "flux[MeV/cm^2/s]": Flist} df = pd.DataFrame(data=data) df.to_csv("excess_flux.dat", sep="\t", index=False) #calculte TS: TS = -2 * (null - alternative) #write results: savefile = "TS_sim_%s.txt" % sim f = open(savefile, "w") f.write(str(TS)) f.close() #rm ft file to reduce storage: os.system('rm ft1_00.fits') return
config['fileio']['outdir'] = cwd+'/fits' config['fileio']['logfile'] = cwd+'/fits/fermipy.log' config['data']['ltcube'] = cwd+'/fits/ltcube_00.fits' config['model']['galdiff'] = path_to_conda+'/share/fermitools/refdata/fermi/galdiffuse/gll_iem_v07.fits' config['model']['isodiff'] = path_to_conda+'/share/fermitools/refdata/fermi/galdiffuse/iso_P8R3_SOURCE_V3_v1.txt' config['logging']['verbosity'] = 4 source = config['selection']['target'] with open(cwd+'/config_modified.yaml', 'w') as o: yaml.dump(config, o) likelihoods = np.zeros((5)) gta = GTAnalysis(config='config_modified.yaml') gta.setup() model = {'Index' : 2.0, 'SpatialModel' : 'PointSource'} for i in range(1,6): gta.optimize() gta.free_sources(free=False) gta.free_source(source) gta.free_source('galdiff') gta.free_source('isodiff') gta.free_sources(distance=3, pars='norm') gta.free_sources(minmax_ts=[100, None], pars='norm') gta.fit(optimizer='NEWMINUIT', reoptimize=True) maps = gta.residmap(f'../maps/opt_alternating{i}', model=model, make_plots=True) maps = gta.tsmap(f'../maps/opt_alternating_{i}', model=model, make_plots=True) gta.write_roi(f'opt_{i}', make_plots=True) likelihoods[i-1] = - gta.like() np.savetxt('optimization_process_likes_alternating.dat', likelihoods)
def FGES_BinnedAnalysis(prefix, ANALYSISDIR, numsources, xmlsources, spectrum, spectrumpoints, spectrumpointsUL, spectrum_mev_or_erg, spectrum_mev_or_tev, configfile): ANALYSISDIR = ANALYSISDIR + prefix + '/' i = numsources #number of sources sources_names = '' for x in range(0, i): sources_names += str(xmlsources[x]) #Run the likelihood analysis up to doing the fit gta = GTAnalysis(ANALYSISDIR + configfile, logging={'verbosity': 3}) gta.setup() #Print the pre likelihood fit parameters gta.print_roi() for x in range(0, i): print(gta.roi[xmlsources[x]]) #Do an initial optimization of parameters gta.optimize() gta.print_roi() #Prepare to get the likelihood #Free the normalizations of sources within 7 degrees of the center of the field of view gta.free_sources(distance=7.0, pars='norm') gta.free_source('galdiff') gta.free_source('isodiff') for x in range(0, i): gta.free_source(xmlsources[x]) #LIKELIHOOD ANALYSIS fit_results = gta.fit() #print out and return the results print('Fit Quality: ', fit_results['fit_quality']) for x in range(0, i): print(gta.roi[xmlsources[x]]) gta.write_roi(sources_names + 'fit') #RESIDUAL MAP model = {'Index': 2.0, 'SpatialModel': 'PointSource'} maps = gta.residmap('residual', model=model, make_plots=True) # Generate residual map with source of interest removed from the model model_nosource = {'Index': 2.0, 'SpatialModel': 'PointSource'} maps_nosource = gta.residmap('residual_wsource', model=model_nosource, exclude=xmlsources, make_plots=True) #TS Map tsmap = gta.tsmap('tsmap', model={ 'SpatialModel': 'PointSource', 'Index': 2.0 }, exclude=xmlsources, make_plots=True) tsmap_wSNR = gta.tsmap('tsmap_wSNR', model={ 'SpatialModel': 'PointSource', 'Index': 2.0 }, make_plots=True) #PLOT SEDs for x in range(0, i): c = np.load('10to500gev/' + sources_names + 'fit.npy').flat[0] sorted(c['sources'].keys()) c['sources'][xmlsources[x]]['flux'] print(c['sources'][xmlsources[x]]['param_names'][:4]) print(c['sources'][xmlsources[x]]['param_values'][:4]) c['sources'][xmlsources[x]]['ts'] E = np.array(c['sources'][xmlsources[x]]['model_flux']['energies']) dnde = np.array(c['sources'][xmlsources[x]]['model_flux']['dnde']) dnde_hi = np.array( c['sources'][xmlsources[x]]['model_flux']['dnde_hi']) dnde_lo = np.array( c['sources'][xmlsources[x]]['model_flux']['dnde_lo']) if spectrum_mev_or_erg == "erg": suffix = 'erg' mult = 0.00000160218 elif spectrum_mev_or_erg == "mev": suffix = 'MeV' mult = 1 if spectrum_mev_or_tev == "mev": xaxis = 'MeV' denominator = 1 elif spectrum_mev_or_tev == "tev": xaxis = 'TeV' denominator = 1000000 if spectrum: plt.loglog(E, (E**2) * dnde, 'k--') plt.loglog(E, (E**2) * dnde_hi, 'k') plt.loglog(E, (E**2) * dnde_lo, 'k') plt.xlabel('E [MeV]') plt.ylabel(r'E$^2$ dN/dE [MeV cm$^{-2}$ s$^{-1}$]') plt.savefig('spectrum_' + xmlsources[x] + '.png') #GET SED POINTS if spectrumpoints: sed = gta.sed(xmlsources[x], make_plots=True) #sed = gta.sed(xmlsource,prefix=xmlsource + 'spectrum',loge_bins=) src = gta.roi[xmlsources[x]] #Plot without upper limits plt.loglog(E, (E**2) * dnde, 'k--') plt.loglog(E, (E**2) * dnde_hi, 'k') plt.loglog(E, (E**2) * dnde_lo, 'k') plt.errorbar(np.array(sed['e_ctr']), sed['e2dnde'], yerr=sed['e2dnde_err'], fmt='o') plt.xlabel('E [MeV]') plt.ylabel(r'E$^{2}$ dN/dE [MeV cm$^{-2}$ s$^{-1}$]') #plt.show() plt.savefig('spectrumpoints_' + xmlsources[x] + '.png') #Plot with upper limits, last 5 points plt.loglog(E, (E**2) * dnde, 'k--') plt.loglog(E, (E**2) * dnde_hi, 'k') plt.loglog(E, (E**2) * dnde_lo, 'k') plt.errorbar(sed['e_ctr'][:-5], sed['e2dnde'][:-5], yerr=sed['e2dnde_err'][:-5], fmt='o') plt.errorbar(np.array(sed['e_ctr'][-5:]), sed['e2dnde_ul95'][-5:], yerr=0.2 * sed['e2dnde_ul95'][-5:], fmt='o', uplims=True) plt.xlabel('E [MeV]') plt.ylabel(r'E$^{2}$ dN/dE [MeV cm$^{-2}$ s$^{-1}$]') plt.savefig('spectrumpointsUL_' + xmlsources[x] + '.png') plt.clf()
def _get_fermipy_instance(configuration, likelihood_model): """ Generate a 'model' configuration section for fermipy starting from a likelihood model from astromodels :param configuration: a dictionary containing the configuration for fermipy :param likelihood_model: the input likelihood model from astromodels :type likelihood_model: astromodels.Model :return: a dictionary with the 'model' section of the fermipy configuration """ # Generate a new 'model' section in the configuration which reflects the model # provided as input # Get center and radius of ROI ra_center = float(configuration["selection"]["ra"]) dec_center = float(configuration["selection"]["dec"]) roi_width = float(configuration["binning"]["roiwidth"]) roi_radius = old_div(roi_width, np.sqrt(2.0)) # Get IRFS irfs = evclass_irf[int(configuration["selection"]["evclass"])] log.info(f"Using IRFs {irfs}") if "gtlike" in configuration and "irfs" in configuration["gtlike"]: if irfs.upper() != configuration["gtlike"]["irfs"].upper(): log.critical( "Evclass points to IRFS %s, while you specified %s in the " "configuration" % (irfs, configuration["gtlike"]["irfs"])) else: if not "gtlike" in configuration: configuration["gtlike"] = {} configuration["gtlike"]["irfs"] = irfs # The fermipy model is just a dictionary. It corresponds to the 'model' section # of the configuration file (http://fermipy.readthedocs.io/en/latest/config.html#model) fermipy_model = {} # Find Galactic and Isotropic templates appropriate for this IRFS # (information on the ROI is used to cut the Galactic template, which speeds up the # analysis a lot) # NOTE: these are going to be absolute paths galactic_template = str( sanitize_filename( findGalacticTemplate(irfs, ra_center, dec_center, roi_radius), True # noqa: F821 )) isotropic_template = str( sanitize_filename(findIsotropicTemplate(irfs), True)) # noqa: F821 # Add them to the fermipy model fermipy_model["galdiff"] = galactic_template fermipy_model["isodiff"] = isotropic_template # Now iterate over all sources contained in the likelihood model sources = [] # point sources for point_source in list(likelihood_model.point_sources.values() ): # type: astromodels.PointSource this_source = { "Index": 2.56233, "Scale": 572.78, "Prefactor": 2.4090e-12 } this_source["name"] = point_source.name this_source["ra"] = point_source.position.ra.value this_source["dec"] = point_source.position.dec.value # The spectrum used here is unconsequential, as it will be substituted by a FileFunction # later on. So I will just use PowerLaw for everything this_source["SpectrumType"] = "PowerLaw" sources.append(this_source) # extended sources for extended_source in list(likelihood_model.extended_sources.values() ): # type: astromodels.ExtendedSource raise NotImplementedError("Extended sources are not supported yet") # Add all sources to the model fermipy_model["sources"] = sources # Now we can finally instance the GTAnalysis instance configuration["model"] = fermipy_model gta = GTAnalysis(configuration) # noqa: F821 # This will take a long time if it's the first time we run with this model gta.setup() # Substitute all spectra for point sources with FileSpectrum, so that we will be able to control # them from 3ML energies_keV = None for point_source in list(likelihood_model.point_sources.values() ): # type: astromodels.PointSource # Fix this source, so fermipy will not optimize by itself the parameters gta.free_source(point_source.name, False) # This will substitute the current spectrum with a FileFunction with the same shape and flux gta.set_source_spectrum(point_source.name, "FileFunction", update_source=False) # Get the energies at which to evaluate this source this_log_energies, _flux = gta.get_source_dnde(point_source.name) this_energies_keV = (10**this_log_energies * 1e3 ) # fermipy energies are in GeV, we need keV if energies_keV is None: energies_keV = this_energies_keV else: # This is to make sure that all sources are evaluated at the same energies if not np.all(energies_keV == this_energies_keV): log.critical( "All sources should be evaluated at the same energies.") dnde = point_source(energies_keV) # ph / (cm2 s keV) dnde_per_MeV = dnde * 1000.0 # ph / (cm2 s MeV) gta.set_source_dnde(point_source.name, dnde_per_MeV, False) # Same for extended source for extended_source in list(likelihood_model.extended_sources.values() ): # type: astromodels.ExtendedSource raise NotImplementedError("Extended sources are not supported yet") return gta, energies_keV
def main(): usage = "usage: %(prog)s [config file]" description = "Run fermipy analysis chain." parser = argparse.ArgumentParser(usage=usage,description=description) parser.add_argument('--config', default = 'sample_config.yaml') parser.add_argument('--source', default = None) args = parser.parse_args() gta = GTAnalysis(args.config,logging={'verbosity' : 3}, fileio={'workdir_regex' : '\.xml$|\.npy$'}) gta.setup() names = [s.name for s in gta.roi.sources if not s.diffuse] gta.reload_sources(names) sqrt_ts_threshold=3 model0 = { 'SpatialModel' : 'PointSource', 'Index' : 1.5 } model1 = { 'SpatialModel' : 'PointSource', 'Index' : 2.0 } model2 = { 'SpatialModel' : 'PointSource', 'Index' : 2.5 } #src_name = gta.roi.sources[0].name if args.source is None: src_name = gta.config['selection']['target'] else: src_name = args.source # ----------------------------------- # Fit the Baseline Model # ----------------------------------- # Get a reasonable starting point for the spectral model gta.free_source(src_name) gta.fit() gta.free_source(src_name,False) gta.optimize() # Localize 3FGL sources for s in gta.roi.sources: if not s['SpatialModel'] == 'PointSource': continue if s['offset'] < 0.5 or s['ts'] < 25.: continue if s['offset_roi_edge'] > -0.1: continue gta.localize(s.name,nstep=5,dtheta_max=0.5,update=True, prefix='base') gta.free_source(s.name,False) gta.tsmap('base',model=model1) # Look for new point sources outside the inner 1.0 deg gta.find_sources('base',model=model1, search_skydir=gta.roi.skydir, max_iter=5,min_separation=0.5, sqrt_ts_threshold=sqrt_ts_threshold, search_minmax_radius=[1.0,None]) gta.optimize() gta.print_roi() gta.write_roi('base') # ----------------------------------- # Pass 0 - Source at Nominal Position # ----------------------------------- fit_region(gta,'fit0',src_name) # ------------------------------------- # Pass 1 - Source at Localized Position # ------------------------------------- gta.localize(src_name,nstep=5,dtheta_max=0.5,update=True, prefix='fit1') fit_region(gta,'fit1',src_name) fit_halo(gta,'fit1',src_name) gta.load_roi('fit1') # ------------------------------------- # Pass 2 - 2+ Point Sources # ------------------------------------- srcs = [] # Fit up to 4 sources for i in range(2,6): srcs_fit = gta.find_sources('fit%i'%i, search_skydir=gta.roi.skydir, max_iter=1, sources_per_iter=1, sqrt_ts_threshold=3, min_separation=0.5, search_minmax_radius=[None,1.0]) if len(srcs_fit['sources']) == 0: break srcs += srcs_fit['sources'] best_fit_idx = i gta.localize(src_name,nstep=5,dtheta_max=0.4, update=True,prefix='fit%i'%i) # Relocalize new sources for s in sorted(srcs, key=lambda t: t['ts'],reverse=True): gta.localize(s.name,nstep=5,dtheta_max=0.4, update=True,prefix='fit%i'%i) fit_region(gta,'fit%i'%i,src_name) fit_halo(gta,'fit%i'%i,src_name) gta.load_roi('fit%i'%i) new_source_data = [] for s in srcs: src_data = gta.roi[s.name].data new_source_data.append(copy.deepcopy(src_data)) np.save(os.path.join(gta.workdir,'new_source_data.npy'), new_source_data)
class ExtensionFit: def __init__(self, configFile): self.gta = GTAnalysis(configFile, logging={'verbosity': 3}) self.target = None self.targetRadius = None self.distance = None self.catalog = fits.getdata('/users-data/mfalxa/code/gll_psch_v13.fit', 1) def setSourceName(self, sourceObject, newName): self.gta.delete_source(sourceObject['name']) self.gta.add_source(newName, sourceObject) ''' INITIALIZE ''' def initialize(self, sizeROI, rInner, addToROI, TSMin, debug): self.gta.setup() if self.gta.config['selection']['emin'] >= 10000: self.gta.set_parameter('galdiff', 'Scale', 30000) if debug == True: self.gta.make_plots('startAll') self.gta.residmap(prefix='startAll', make_plots=True) # Get model source names sourceList = self.gta.get_sources(exclude=['isodiff', 'galdiff']) # Delete sources unassociated with TS < 50 for i in range(len(sourceList)): if sourceList[i]['catalog']['TS_value'] < TSMin and self.catalog[ 'CLASS'][self.catalog['Source_Name'] == sourceList[i] ['name']][0] == '': self.gta.delete_source(sourceList[i]['name']) closests = self.gta.get_sources(distance=rInner, exclude=['isodiff', 'galdiff']) # Delete all unidentified sources for i in range(len(closests)): if self.catalog['CLASS'][self.catalog['Source_Name'] == closests[i] ['name']][0].isupper() == False: self.gta.delete_source(closests[i]['name']) if self.catalog['CLASS'][self.catalog['Source_Name'] == closests[i] ['name']][0] == 'SFR': self.target = closests[i] self.setSourceName(self.target, 'TESTSOURCE') # If debug, save ROI and make plots if debug == True: self.gta.write_roi('startModel') self.gta.residmap(prefix='start', make_plots=True) self.gta.make_plots('start') # Optmize spectral parameters for sources with npred > 1 self.gta.optimize(npred_threshold=1, skip=['isodiff']) # Get model source names sourceList = self.gta.get_sources(distance=sizeROI + addToROI, square=True, exclude=['isodiff', 'galdiff']) # Iterate source localizing on source list for i in range(len(sourceList)): if sourceList[i].extended == False: self.gta.localize(sourceList[i]['name'], write_fits=False, write_npy=False, update=True) # Free sources within ROI size + extra distance from center self.gta.free_sources(distance=sizeROI + addToROI, square=True) # Re-optimize ROI self.gta.optimize(skip=['isodiff']) # Save and make plots if debug if debug == True: self.gta.write_roi('modelInitialized') self.gta.residmap(prefix='initialized', make_plots=True) self.gta.make_plots('initialized') # Lock sources self.gta.free_sources(free=False) ''' OUTER REGION ''' def outerRegionAnalysis(self, sizeROI, rInner, sqrtTsThreshold, minSeparation, debug): self.gta.free_sources(distance=sizeROI, pars='norm', square=True, free=True) self.gta.free_sources(distance=rInner, free=False) self.gta.free_source('galdiff', free=True) self.gta.free_source('isodiff', free=False) # Seek new sources until none are found sourceModel = { 'SpectrumType': 'PowerLaw', 'Index': 2.0, 'Scale': 30000, 'Prefactor': 1.e-15, 'SpatialModel': 'PointSource' } newSources = self.gta.find_sources(sqrt_ts_threshold=sqrtTsThreshold, min_separation=minSeparation, model=sourceModel, **{ 'search_skydir': self.gta.roi.skydir, 'search_minmax_radius': [rInner, sizeROI] }) if len(newSources) > 0: for i in range(len(newSources)): if newSources['sources'][i]['ts'] > 100.: self.gta.set_source_spectrum( newSources['sources'][i]['name'], spectrum_type='LogParabola') self.gta.free_source(newSources['sources'][i]['name']) self.gta.fit() self.gta.free_source(newSources['sources'][i]['name'], free=False) # Optimize all ROI self.gta.optimize(skip=['isodiff']) # Save sources found if debug == True: self.gta.residmap(prefix='outer', make_plots=True) self.gta.write_roi('outerAnalysisROI') self.gta.make_plots('outer') ''' INNER REGION ''' def innerRegionAnalysis(self, sizeROI, rInner, maxIter, sqrtTsThreshold, minSeparation, dmMin, TSm1Min, TSextMin, debug): self.gta.free_sources(distance=sizeROI, square=True, free=False) self.gta.free_sources(distance=rInner, free=True, exclude=['isodiff']) # Keep closest source if identified with star forming region in catalog or look for new source closest to center within Rinner if self.target != None: print('Closest source identified with star forming region : ', self.target['name']) self.gta.set_source_morphology('TESTSOURCE', **{'spatial_model': 'PointSource'}) else: closeSources = self.gta.find_sources(sqrt_ts_threshold=2., min_separation=minSeparation, max_iter=1, **{ 'search_skydir': self.gta.roi.skydir, 'search_minmax_radius': [0., rInner] }) dCenter = np.array([]) for i in range(len(closeSources['sources'])): dCenter = np.append( dCenter, self.gta.roi.skydir.separation( closeSources['sources'][i].skydir).value) self.target = closeSources['sources'][np.argmin(dCenter)] print('Target name : ', self.target['name']) self.setSourceName(self.target, 'TESTSOURCE') for i in [ x for x in range(len(closeSources['sources'])) if x != (np.argmin(dCenter)) ]: self.gta.delete_source(closeSources['sources'][i]['name']) self.gta.optimize(skip=['isodiff']) # Initialize n sources array nSources = [] # Save ROI without extension fit self.gta.write_roi('nSourcesFit') if debug == True: self.gta.make_plots('innerInit') self.gta.residmap(prefix='innerInit', make_plots=True) # Test for extension extensionTest = self.gta.extension('TESTSOURCE', make_plots=True, write_npy=debug, write_fits=debug, spatial_model='RadialDisk', update=True, free_background=True, fit_position=True) extLike = extensionTest['loglike_ext'] TSext = extensionTest['ts_ext'] print('TSext : ', TSext) extAIC = 2 * (len(self.gta.get_free_param_vector()) - self.gta._roi_data['loglike']) self.gta.write_roi('extFit') if debug == True: self.gta.residmap(prefix='ext0', make_plots=True) self.gta.make_plots('ext0') self.gta.load_roi('nSourcesFit', reload_sources=True) for i in range(1, maxIter + 1): # Test for n point sources nSourcesTest = self.gta.find_sources( sources_per_iter=1, sqrt_ts_threshold=sqrtTsThreshold, min_separation=minSeparation, max_iter=1, **{ 'search_skydir': self.gta.roi.skydir, 'search_minmax_radius': [0., rInner] }) if len(nSourcesTest['sources']) > 0: if nSourcesTest['sources'][0]['ts'] > 100.: self.gta.set_source_spectrum( nSourcesTest['sources'][0]['name'], spectrum_type='LogParabola') self.gta.free_source(nSourcesTest['sources'][0]['name']) self.gta.fit() self.gta.free_source(nSourcesTest['sources'][0]['name'], free=False) if debug == True: self.gta.make_plots('nSources' + str(i)) nSources.append(nSourcesTest['sources']) self.gta.localize(nSourcesTest['sources'][0]['name'], write_npy=debug, write_fits=debug, update=True) nAIC = 2 * (len(self.gta.get_free_param_vector()) - self.gta._roi_data['loglike']) self.gta.free_source(nSourcesTest['sources'][0]['name'], free=True) self.gta.residmap(prefix='nSources' + str(i), make_plots=True) self.gta.write_roi('n1SourcesFit') # Estimate Akaike Information Criterion difference between both models dm = extAIC - nAIC print('AIC difference between both models = ', dm) # Estimate TS_m+1 extensionTestPlus = self.gta.extension( 'TESTSOURCE', make_plots=True, write_npy=debug, write_fits=debug, spatial_model='RadialDisk', update=True, free_background=True, fit_position=True) TSm1 = 2 * (extensionTestPlus['loglike_ext'] - extLike) print('TSm+1 = ', TSm1) if debug == True: self.gta.residmap(prefix='ext' + str(i), make_plots=True) self.gta.make_plots('ext' + str(i)) if dm < dmMin and TSm1 < TSm1Min: self.gta.load_roi('extFit', reload_sources=True) break else: # Set extension test to current state and save current extension fit ROI and load previous nSources fit ROI extensionTest = extensionTestPlus extLike = extensionTestPlus['loglike_ext'] TSext = extensionTestPlus['ts_ext'] print('TSext : ', TSext) extAIC = 2 * (len(self.gta.get_free_param_vector()) - self.gta._roi_data['loglike']) self.gta.write_roi('extFit') self.gta.load_roi('n1SourcesFit', reload_sources=True) self.gta.write_roi('nSourcesFit') else: if TSext > TSextMin: self.gta.load_roi('extFit', reload_sources=True) break else: self.gta.load_roi('nSourcesFit', reload_sources=True) break self.gta.fit() # Get source radius depending on spatial model endSources = self.gta.get_sources() for i in range(len(endSources)): if endSources[i]['name'] == 'TESTSOURCE': self.target = endSources[i] self.distance = self.gta.roi.skydir.separation( endSources[i].skydir).value if endSources[i].extended == True: self.targetRadius = endSources[i]['SpatialWidth'] else: self.targetRadius = endSources[i]['pos_r95'] ''' CHECK OVERLAP ''' def overlapDisk(self, rInner, radiusCatalog): print('Target radius : ', self.targetRadius) # Check radius sizes if radiusCatalog < self.targetRadius: r = float(radiusCatalog) R = float(self.targetRadius) else: r = float(self.targetRadius) R = float(radiusCatalog) # Estimating overlapping area d = self.distance print('Distance from center : ', d) if d < (r + R): if R < (r + d): area = r**2 * np.arccos( (d**2 + r**2 - R**2) / (2 * d * r)) + R**2 * np.arccos( (d**2 + R**2 - r**2) / (2 * d * R)) - 0.5 * np.sqrt( (-d + r + R) * (d + r - R) * (d - r + R) * (d + r + R)) overlap = round((area / (np.pi * r**2)) * 100, 2) else: area = np.pi * r**2 overlap = 100.0 else: area = 0. overlap = 0. print('Overlapping surface : ', area) print('Overlap : ', overlap) if overlap > 68. and self.distance < rInner: associated = True else: associated = False return associated ''' CHECK UPPER LIMIT ''' def upperLimit(self, name, radius): sourceModel = { 'SpectrumType': 'PowerLaw', 'Index': 2.0, 'Scale': 30000, 'Prefactor': 1.e-15, 'SpatialModel': 'RadialDisk', 'SpatialWidth': radius, 'glon': self.gta.config['selection']['glon'], 'glat': self.gta.config['selection']['glat'] } self.gta.add_source(name, sourceModel, free=True) self.gta.fit() self.gta.residmap(prefix='upperLimit', make_plots=True) print('Upper limit : ', self.gta.get_sources()[0]['flux_ul95'])
f.write(os.path.join(od, 'ft1_00.fits') + '\n') # modify base config to include merged files with open(BASE_CONFIG) as infile, \ open(CONFIG_FINAL_FILE, 'w') as outfile: config = yaml.load(infile) config['data']['evfile'] = os.path.join(os.getcwd(), FT1_FILES_LIST) config['data']['ltcube'] = os.path.join(os.getcwd(), LTCUBE_FINAL_FILE) config['fileio'] = {'outdir': 'out_merged/'} outfile.write('# Automatically merged from directories:\n') for outdir in outdirs: outfile.write('# {}\n'.format(outdir)) outfile.write('\n') yaml.dump(config, outfile, indent=4) # some generic processing just for sanity check gta = GTAnalysis(CONFIG_FINAL_FILE, logging={'verbosity': 3}) gta.setup() gta.free_source('4FGL J1512.8-0906', free=True, pars=['Index']) gta.free_source('4FGL J1512.8-0906', free=True, pars='norm') # Free Normalization of all Sources within 3 deg of ROI center gta.free_sources(distance=3.0, pars='norm') # Free all parameters of isotropic and galactic diffuse components gta.free_source('galdiff') gta.free_source('isodiff') gta.optimize() gta.print_roi() fit_res = gta.fit() print('Fit Quality: ', fit_res['fit_quality']) print(gta.roi['4FGL J1512.8-0906'])