示例#1
0
    def run_analysis(self, argv):
        """Run this analysis"""
        args = self._parser.parse_args(argv)

        limitfile = args.limitfile
        first = args.seed
        last = first + args.nsims
        flist = [limitfile.replace("_SEED.fits", "_%06i.fits" % seed)\
                     for seed in range(first, last)]

        spec_config = load_yaml(args.specconfig)
        specs = spec_config['specs']
        sum_specs = specs.copy()

        outfile = args.outfile
        summaryfile = args.summaryfile

        hdus = sum_specs + ['INDICES']

        out_tables, out_names = vstack_tables(flist, hdus)

        if is_not_null(outfile):
            fits_utils.write_tables_to_fits(outfile,
                                            out_tables,
                                            namelist=out_names)

        if is_not_null(summaryfile):
            summary_tables = []
            for ot in out_tables[0:-1]:
                summary_table = summarize_limits_results(ot)
                summary_tables.append(summary_table)
            summary_tables.append(Table(out_tables[-1][0]))
            fits_utils.write_tables_to_fits(summaryfile,
                                            summary_tables,
                                            namelist=out_names)
示例#2
0
    def run_analysis(self, argv):
        """Run this analysis"""
        args = self._parser.parse_args(argv)


        sedfile = args.sed_file

        if is_not_null(args.config):
            configfile = os.path.join(os.path.dirname(sedfile), args.config)
        else:
            configfile = os.path.join(os.path.dirname(sedfile), 'config.yaml')

        nbins = _get_enum_bins(configfile)

        first = args.seed
        last = first + args.nsims
        flist = [sedfile.replace("_SEED.fits", "_%06i.fits" % seed)
                 for seed in range(first, last)]
        outfile = args.outfile
        summaryfile = args.summaryfile


        outtable = fill_output_table(
            flist, "SED", CollectSED.collist, nbins=nbins)

        if is_not_null(outfile):
            outtable.write(outfile)

        if is_not_null(summaryfile):
            summary = summarize_sed_results(outtable)
            summary.write(summaryfile)
示例#3
0
    def run_analysis(self, argv):
        """Run this analysis"""
        args = self._parser.parse_args(argv)

        if args.chan.find('_decay') >= 0:
            decay = True
            limit_col = 'll_0.95'
            ylims = (1e+22, 1e+28)
        else:
            decay = False
            limit_col = 'ul_0.95'
            ylims = (1e-28, 1e-22)

        if is_not_null(args.infile):
            tab_m = Table.read(args.infile, hdu="masses")
            tab_s = Table.read(args.infile, hdu=args.chan)
            xvals = tab_m['masses'][0]
            yvals = tab_s[limit_col][0]
            ldict = dict(limits=(xvals, yvals))
        else:
            ldict = {}

        if is_not_null(args.bands):
            tab_b = Table.read(args.bands, hdu=args.chan)
            tab_bm = Table.read(args.bands, hdu="masses")
            bands = get_ul_bands(tab_b, limit_col)
            bands['masses'] = tab_bm['masses'][0]
        else:
            bands = None

        if is_not_null(args.sim):
            sim_srcs = load_yaml(args.sim)
            injected_src = sim_srcs.get('injected_source', None)
        else:
            injected_src = None

        xlims = (1e1, 1e4)

        dm_plot = plot_limits_from_arrays(ldict,
                                          xlims,
                                          ylims,
                                          bands,
                                          decay=decay)

        if injected_src is not None:
            mc_model = injected_src['source_model']
            plot_mc_truth(dm_plot[1], mc_model)

        if args.outfile:
            dm_plot[0].savefig(args.outfile)
            return None
        return dm_plot
示例#4
0
    def build_job_configs(self, args):
        """Hook to build job configurations
        """
        job_configs = {}

        ttype = args['ttype']
        (targets_yaml, sim) = NAME_FACTORY.resolve_targetfile(args)
        if sim is not None:
            raise ValueError("Found 'sim' argument on AnalyzeROI_SG config.")
        if targets_yaml is None:
            return job_configs

        config_yaml = 'config.yaml'
        config_override = args.get('config')
        if is_not_null(config_override):
            config_yaml = config_override

        targets = load_yaml(targets_yaml)
        base_config = dict(roi_baseline=args['roi_baseline'],
                           make_plots=args['make_plots'])

        for target_name in targets.keys():
            name_keys = dict(target_type=ttype,
                             target_name=target_name,
                             fullpath=True)
            target_dir = NAME_FACTORY.targetdir(**name_keys)
            config_path = os.path.join(target_dir, config_yaml)
            logfile = make_nfs_path(os.path.join(
                target_dir, "%s_%s.log" % (self.linkname, target_name)))
            job_config = base_config.copy()           
            job_config.update(dict(config=config_path,
                                   logfile=logfile))
            job_configs[target_name] = job_config

        return job_configs
示例#5
0
    def run_analysis(self, argv):
        """Run this analysis"""
        args = self._parser.parse_args(argv)

        if not args.rosters:
            raise RuntimeError("You must specify at least one target roster")

        if is_null(args.ttype):
            raise RuntimeError("You must specify a target type")

        if is_null(args.sims):
            sims = []
        else:
            sims = args.sims

        if is_null(args.alias_dict):
            aliases = None
        else:
            aliases = load_yaml(args.alias_dict)

        name_keys = dict(target_type=args.ttype,
                         fullpath=True)
        config_file = NAME_FACTORY.ttypeconfig(**name_keys)

        if is_not_null(args.config):
            config_file = args.config

        roster_dict = {}
        for roster in args.rosters:
            a_roster = load_yaml(roster)
            roster_dict.update(a_roster)

        base_config = load_yaml(config_file)
        self._write_target_dirs(args.ttype, roster_dict, base_config,
                                sims, args.spatial_models, aliases)
示例#6
0
    def resolve_targetfile(self, args, require_sim_name=False):  # x
        """Get the name of the targetfile based on the job arguments"""
        ttype = args.get('ttype')
        if is_null(ttype):
            sys.stderr.write('Target type must be specified')
            return (None, None)

        sim = args.get('sim')
        if is_null(sim):
            if require_sim_name:
                sys.stderr.write('Simulation scenario must be specified')
                return (None, None)
            else:
                sim = None

        name_keys = dict(target_type=ttype,
                         targetlist='target_list.yaml',
                         sim_name=sim,
                         fullpath=True)
        if sim is None:
            targetfile = self.targetfile(**name_keys)
        else:
            targetfile = self.sim_targetfile(**name_keys)

        targets_override = args.get('targetfile')
        if is_not_null(targets_override):
            targetfile = targets_override

        return (targetfile, sim)
示例#7
0
    def resolve_targetfile(self, args, require_sim_name=False):  # x
        """Get the name of the targetfile based on the job arguments"""
        ttype = args.get('ttype')
        if is_null(ttype):
            sys.stderr.write('Target type must be specified')
            return (None, None)

        sim = args.get('sim')
        if is_null(sim):
            if require_sim_name:
                sys.stderr.write('Simulation scenario must be specified')
                return (None, None)
            else:
                sim = None

        name_keys = dict(target_type=ttype,
                         targetlist='target_list.yaml',
                         sim_name=sim,
                         fullpath=True)
        if sim is None:
            targetfile = self.targetfile(**name_keys)
        else:
            targetfile = self.sim_targetfile(**name_keys)

        targets_override = args.get('targetfile')
        if is_not_null(targets_override):
            targetfile = targets_override

        return (targetfile, sim)
示例#8
0
    def build_job_configs(self, args):
        """Hook to build job configurations
        """
        job_configs = {}

        ttype = args['ttype']
        (targets_yaml, sim) = NAME_FACTORY.resolve_targetfile(args)
        if sim is not None:
            raise ValueError("Found 'sim' argument on AnalyzeROI_SG config.")
        if targets_yaml is None:
            return job_configs

        config_yaml = 'config.yaml'
        config_override = args.get('config')
        if is_not_null(config_override):
            config_yaml = config_override

        targets = load_yaml(targets_yaml)
        base_config = dict(roi_baseline=args['roi_baseline'],
                           make_plots=args['make_plots'])

        for target_name in targets.keys():
            name_keys = dict(target_type=ttype,
                             target_name=target_name,
                             fullpath=True)
            target_dir = NAME_FACTORY.targetdir(**name_keys)
            config_path = os.path.join(target_dir, config_yaml)
            logfile = make_nfs_path(
                os.path.join(target_dir,
                             "%s_%s.log" % (self.linkname, target_name)))
            job_config = base_config.copy()
            job_config.update(dict(config=config_path, logfile=logfile))
            job_configs[target_name] = job_config

        return job_configs
示例#9
0
    def run_analysis(self, argv):
        """Run this analysis"""
        args = self._parser.parse_args(argv)

        if args.ttype is not None:
            name_keys = dict(target_type=args.ttype, fullpath=True)
            config_file = NAME_FACTORY.ttypeconfig(**name_keys)
            spec_config = NAME_FACTORY.specconfig(**name_keys)
            spec_file = NAME_FACTORY.specfile(**name_keys)
        else:
            config_file = None
            spec_config = None
            spec_file = None

        if is_not_null(args.config):
            config_file = args.config
        if is_not_null(args.specconfig):
            spec_config = args.specconfig
        if is_not_null(args.specfile):
            spec_file = args.specfile

        if config_file is None:
            sys.stderr.write('No input configuration file is specified')
            return -1

        if spec_config is None:
            sys.stderr.write('No input spectra configurate file is specified')
            return -1

        if spec_file is None:
            sys.stderr.write('No output spectra file is specified')
            return -1

        spec_config = load_yaml(spec_config)
        channels = spec_config['channels']

        if isinstance(spec_config['masses'], dict):
            masses = np.logspace(np.log10(spec_config['masses']['mass_min']),
                                 np.log10(spec_config['masses']['mass_max']),
                                 spec_config['masses']['mass_nstep'])
        elif isinstance(spec_config['masses'], list):
            masses = spec_config['masses']

        dm_spec_table = DMSpecTable.create_from_config(config_file, channels,
                                                       masses)
        dm_spec_table.write_fits(spec_file, args.clobber)
        return 0
示例#10
0
    def run_analysis(self, argv):
        """Run this analysis"""
        args = self._parser.parse_args(argv)

        if args.ttype is None:
            raise RuntimeError('Target type must be specified')

        name_keys = dict(target_type=args.ttype,
                         rosterlist='roster_list.yaml',
                         sim_name=args.sim,
                         fullpath=True)

        spec_config = NAME_FACTORY.specconfig(**name_keys)
        if is_not_null(args.specconfig):
            spec_config = args.specconfig

        spec_config = load_yaml(spec_config)
        channels = spec_config['channels']

        if is_not_null(args.sim):
            roster_file = NAME_FACTORY.sim_rosterfile(**name_keys)
            sim_name = args.sim
            is_sim = True
        else:
            roster_file = NAME_FACTORY.rosterfile(**name_keys)
            is_sim = False
            sim_name = None

        if is_not_null(args.rosterlist):
            roster_file = args.rosterlist

        roster_dict = load_yaml(roster_file)

        if is_sim:
            seedlist = list(range(args.seed, args.seed + args.nsims))
        else:
            seedlist = [0]

        astro_prior = args.astro_prior
        if is_null(astro_prior):
            astro_prior = 'none'

        for seed in seedlist:
            StackLikelihood.stack_rosters(roster_dict, args.ttype, channels,
                                          astro_prior, sim_name, seed,
                                          args.clobber)
示例#11
0
    def build_job_configs(self, args):
        """Hook to build job configurations
        """
        job_configs = {}

        ttype = args['ttype']
        (targets_yaml, sim) = NAME_FACTORY.resolve_targetfile(args)
        if targets_yaml is None:
            return job_configs

        config_yaml = 'config.yaml'
        config_override = args.get('config')
        if is_not_null(config_override):
            config_yaml = config_override

        targets = load_yaml(targets_yaml)
        nsims_job = args['nsims_job']
        first_seed = args['seed']
        nsims = args['nsims']
        last_seed = first_seed + nsims

        base_config = dict(sim_profile=args['sim_profile'],
                           roi_baseline=args['roi_baseline'],
                           non_null_src=args['non_null_src'],
                           do_find_src=args['do_find_src'],
                           sim=sim)

        for target_name, target_list in targets.items():
            name_keys = dict(target_type=ttype,
                             target_name=target_name,
                             sim_name=sim,
                             fullpath=True)
            simdir = NAME_FACTORY.sim_targetdir(**name_keys)
            config_path = os.path.join(simdir, config_yaml)

            job_config = base_config.copy()
            job_config.update(dict(config=config_path, profiles=target_list))

            current_seed = first_seed
            while current_seed < last_seed:
                fullkey = "%s_%06i" % (target_name, current_seed)
                logfile = make_nfs_path(
                    os.path.join(
                        simdir, "%s_%s_%06i.log" %
                        (self.linkname, target_name, current_seed)))
                if nsims_job <= 0 or current_seed + nsims_job >= last_seed:
                    nsims_current = last_seed - current_seed
                else:
                    nsims_current = nsims_job
                job_config.update(
                    dict(seed=current_seed,
                         nsims=nsims_current,
                         logfile=logfile))
                job_configs[fullkey] = job_config.copy()
                current_seed += nsims_current

        return job_configs
示例#12
0
    def run_analysis(self, argv):
        """Run this analysis"""
        args = self._parser.parse_args(argv)

        limit_col = 'ul_0.95'
        ylims = (1e-2, 1e+2)

        if is_not_null(args.infile):
            tab_m = Table.read(args.infile, hdu="indices")
            tab_s = Table.read(args.infile, hdu=args.spec)
            xvals = tab_m['indices'][0]
            yvals = tab_s[limit_col][0]
            ldict = dict(limits=(xvals, yvals))
        else:
            ldict = {}

        if is_not_null(args.bands):
            tab_b = Table.read(args.bands, hdu=args.spec)
            tab_bm = Table.read(args.bands, hdu="indices")
            bands = get_ul_bands(tab_b, 'mles')
            bands['indices'] = tab_bm['indices'][0]
        else:
            bands = None

        if is_not_null(args.sim):
            sim_srcs = load_yaml(args.sim)
            injected_src = sim_srcs.get('injected_source', None)
        else:
            injected_src = None

        xlims = (1e1, 1e4)

        stack_plot = plot_limits_from_arrays(ldict, xlims, ylims, bands)

        if injected_src is not None:
            mc_model = injected_src['source_model']
            plot_mc_truth(stack_plot[1], mc_model)

        if args.outfile:
            stack_plot[0].savefig(args.outfile)
            return None
        return stack_plot
示例#13
0
    def build_job_configs(self, args):
        """Hook to build job configurations
        """
        job_configs = {}

        ttype = args['ttype']
        (targets_yaml, sim) = NAME_FACTORY.resolve_targetfile(args)
        if targets_yaml is None:
            return job_configs

        config_yaml = 'config.yaml'
        config_override = args.get('config')
        if is_not_null(config_override):
            config_yaml = config_override

        targets = load_yaml(targets_yaml)
        nsims_job = args['nsims_job']
        first_seed = args['seed']
        nsims = args['nsims']
        last_seed = first_seed + nsims

        base_config = dict(sim_profile=args['sim_profile'],
                           roi_baseline=args['roi_baseline'],
                           non_null_src=args['non_null_src'],
                           sim=sim)

        for target_name, target_list in targets.items():
            name_keys = dict(target_type=ttype,
                             target_name=target_name,
                             sim_name=sim,
                             fullpath=True)
            simdir = NAME_FACTORY.sim_targetdir(**name_keys)
            config_path = os.path.join(simdir, config_yaml)

            job_config = base_config.copy()
            job_config.update(dict(config=config_path,
                                   profiles=target_list))

            current_seed = first_seed
            while current_seed < last_seed:
                fullkey = "%s_%06i" % (target_name, current_seed)
                logfile = make_nfs_path(os.path.join(simdir, "%s_%s_%06i.log" % (self.linkname, 
                                                                                 target_name, current_seed)))
                if nsims_job <= 0 or current_seed + nsims_job >= last_seed:
                    nsims_current = last_seed - current_seed
                else:
                    nsims_current = nsims_job
                job_config.update(dict(seed=current_seed,
                                       nsims=nsims_current,
                                       logfile=logfile))
                job_configs[fullkey] = job_config.copy()
                current_seed += nsims_current

        return job_configs
示例#14
0
    def write_stacked(ttype, roster_name, stacked_dict, astro_prior_key, sim,
                      seed, clobber):  #pylint: disable=too-many-arguments
        """ Write the stacked DMCastroData object to a FITS file

        Parameters
        ----------

        ttype : str
            Type of target, used for bookkeeping and file names

        roster_name : str
            Name of the roster, used for bookkeeping and file names

        stacked_dict : dict
            Dictionary of `DMCastroData` objects, keyed by channel

        astro_prior_key : str
            String that identifies the type of prior on the J-factor

        sim : str
            String that specifies the simulation scenario

        seed : int or None
            Key for the simulation instance, used for bookkeeping and file names

        clobber : bool
            Flag to overwrite existing files.

        """
        name_keys = dict(target_type=ttype,
                         target_name="stacked",
                         fullpath=True,
                         roster_name=roster_name,
                         sim_name=sim,
                         seed="%06i" % seed,
                         astro_prior=astro_prior_key)

        if is_not_null(sim):
            outdir = NAME_FACTORY.sim_targetdir(**name_keys)
            outpath = NAME_FACTORY.sim_resultsfile(**name_keys)
        else:
            outdir = NAME_FACTORY.targetdir(**name_keys)
            outpath = NAME_FACTORY.resultsfile(**name_keys)

        try:
            os.makedirs(outdir)
        except OSError:
            pass

        limitfile = outpath.replace('results', 'limits')
        print("Writing stacked results %s" % outpath)
        StackLikelihood.write_fits_files(stacked_dict, outpath, limitfile,
                                         clobber)
示例#15
0
 def resolve_randconfig(self, args):
     """Get the name of the specturm file based on the job arguments"""
     ttype = args.get('ttype')
     if is_null(ttype):
         sys.stderr.write('Target type must be specified')
         return None
     name_keys = dict(target_type=ttype, fullpath=True)
     randconfig = self.randconfig(**name_keys)
     rand_override = args.get('rand_config')
     if is_not_null(rand_override):
         randconfig = rand_override
     return randconfig
示例#16
0
 def resolve_specfile(self, args):
     """Get the name of the specturm file based on the job arguments"""
     ttype = args.get('ttype')
     if is_null(ttype):
         sys.stderr.write('Target type must be specified')
         return None
     name_keys = dict(target_type=ttype, fullpath=True)
     specfile = self.specfile(**name_keys)
     spec_override = args.get('specfile')
     if is_not_null(spec_override):
         specfile = spec_override
     return specfile
示例#17
0
 def resolve_randconfig(self, args):
     """Get the name of the specturm file based on the job arguments"""
     ttype = args.get('ttype')
     if is_null(ttype):
         sys.stderr.write('Target type must be specified')
         return None
     name_keys = dict(target_type=ttype,
                      fullpath=True)
     randconfig = self.randconfig(**name_keys)
     rand_override = args.get('rand_config')
     if is_not_null(rand_override):
         randconfig = rand_override
     return randconfig
示例#18
0
    def run_analysis(self, argv):
        """Run this analysis"""
        args = self._parser.parse_args(argv)

        if args.ttype is not None:
            name_keys = dict(target_type=args.ttype, fullpath=True)
            config_file = NAME_FACTORY.ttypeconfig(**name_keys)
            spec_config = NAME_FACTORY.specconfig(**name_keys)
            spec_file = NAME_FACTORY.specfile(**name_keys)
        else:
            config_file = None
            spec_config = None
            spec_file = None

        if is_not_null(args.config):
            config_file = args.config
        if is_not_null(args.specconfig):
            spec_config = args.specconfig
        if is_not_null(args.specfile):
            spec_file = args.specfile

        if config_file is None:
            sys.stderr.write('No input configuration file is specified')
            return -1

        if spec_config is None:
            sys.stderr.write('No input spectra configurate file is specified')
            return -1

        if spec_file is None:
            sys.stderr.write('No output spectra file is specified')
            return -1

        stack_spec_table = StackSpecTable.create_from_config(
            config_file, spec_file)
        stack_spec_table.write_fits(spec_file, args.clobber)
        return 0
示例#19
0
    def run_analysis(self, argv):
        """Run this analysis"""
        args = self._parser.parse_args(argv)

        limitfile = args.limitfile
        first = args.seed
        last = first + args.nsims
        flist = [limitfile.replace("_SEED.fits", "_%06i.fits" % seed)\
                     for seed in range(first, last)]

        spec_config = load_yaml(args.specconfig)
        channels = spec_config['channels']
        sum_chans = CollectLimits.select_channels(channels, limitfile)

        outfile = args.outfile
        summaryfile = args.summaryfile

        hdus = sum_chans + ['MASSES']

        out_tables, out_names = vstack_tables(flist, hdus)

        if is_not_null(outfile):
            fits_utils.write_tables_to_fits(outfile,
                                            out_tables,
                                            namelist=out_names)

        if is_not_null(summaryfile):
            summary_tables = []
            for ot, chan in zip(out_tables[0:-1], sum_chans):
                decay = chan.find('_decay') >= 0
                summary_table = summarize_limits_results(ot, decay)
                summary_tables.append(summary_table)
            summary_tables.append(Table(out_tables[-1][0]))
            fits_utils.write_tables_to_fits(summaryfile,
                                            summary_tables,
                                            namelist=out_names)
示例#20
0
    def build_job_configs(self, args):
        """Hook to build job configurations
        """
        job_configs = {}

        ttype = args['ttype']
        (targets_yaml, sim) = NAME_FACTORY.resolve_targetfile(args)
        if sim is not None:
            raise ValueError("Found 'sim' argument on AnalyzeSED_SG config.")
        if targets_yaml is None:
            return job_configs

        targets = load_yaml(targets_yaml)
        config_yaml = 'config.yaml'

        if is_not_null(args['skydirs']):
            skydirs = args['skydirs']
        else:
            skydirs = None

        base_config = dict(roi_baseline=args['roi_baseline'],
                           make_plots=args['make_plots'],
                           non_null_src=args['non_null_src'])

        for target_name, target_list in targets.items():
            name_keys = dict(target_type=ttype,
                             target_name=target_name,
                             sim_name='random',
                             fullpath=True)
            if skydirs is None:
                target_dir = NAME_FACTORY.targetdir(**name_keys)
                skydir_path = None
            else:
                target_dir = NAME_FACTORY.sim_targetdir(**name_keys)
                skydir_path = os.path.join(target_dir, skydirs)
            config_path = os.path.join(target_dir, config_yaml)
            logfile = make_nfs_path(
                os.path.join(target_dir,
                             "%s_%s.log" % (self.linkname, target_name)))
            job_config = base_config.copy()
            job_config.update(
                dict(config=config_path,
                     profiles=target_list,
                     skydirs=skydir_path,
                     logfile=logfile))
            job_configs[target_name] = job_config

        return job_configs
示例#21
0
    def build_job_configs(self, args):
        """Hook to build job configurations
        """
        job_configs = {}

        astro_priors = args['astro_priors']
        clobber = args['clobber']
        sim = args['sim']

        if is_not_null(sim):
            is_sim = True
            nsims = args['nsims']
            seed = args['seed']
        else:
            is_sim = False
            nsims = -1
            seed = -1

        base_config = dict(ttype=args['ttype'],
                           specconfig=args['specconfig'],
                           rosterlist=args['rosterlist'],
                           sim=sim,
                           nsims=nsims,
                           seed=seed,
                           clobber=clobber)

        for astro_prior in astro_priors:

            name_keys = dict(target_type=args['ttype'],
                             target_name='stacked',
                             astro_prior=astro_prior,
                             sim_name=sim,
                             fullpath=True)
            if is_sim:
                target_dir = NAME_FACTORY.sim_targetdir(**name_keys)
                full_key = "%s:%s" % (astro_prior, sim)
            else:
                target_dir = NAME_FACTORY.targetdir(**name_keys)
                full_key = astro_prior

            logfile = os.path.join(target_dir, 'stack_%s.log' % astro_prior)

            job_config = base_config.copy()
            job_config.update(dict(astro_prior=astro_prior, logfile=logfile))

            job_configs[full_key] = job_config

        return job_configs
示例#22
0
文件: link.py 项目: labsaha/fermipy
    def update_args(self, override_args):
        """Update the argument used to invoke the application

        Note that this will also update the dictionary of input and output files.

        Parameters
        -----------

        override_args : dict
            Dictionary of arguments to override the current values
        """
        self.args = extract_arguments(override_args, self.args)
        self._latch_file_info()
        scratch_dir = self.args.get('scratch', None)
        if is_not_null(scratch_dir):
            self._file_stage = FileStageManager(scratch_dir, '.')
示例#23
0
    def update_args(self, override_args):
        """Update the argument used to invoke the application

        Note that this will also update the dictionary of input and output files.

        Parameters
        -----------

        override_args : dict
            Dictionary of arguments to override the current values
        """
        self.args = extract_arguments(override_args, self.args)
        self._latch_file_info()
        scratch_dir = self.args.get('scratch', None)
        if is_not_null(scratch_dir):
            self._file_stage = FileStageManager(scratch_dir, '.')
示例#24
0
    def run_analysis(self, argv):
        """Run this analysis"""
        args = self._parser.parse_args(argv)

        if is_null(args.config):
            raise ValueError("Config yaml file must be specified")
        if is_null(args.rand_config):
            raise ValueError(
                "Random direction config yaml file must be specified")
        config = load_yaml(args.config)
        rand_config = load_yaml(args.rand_config)

        wcsgeom = self._make_wcsgeom_from_config(config)
        dir_dict = self._build_skydir_dict(wcsgeom, rand_config)

        if is_not_null(args.outfile):
            write_yaml(dir_dict, args.outfile)
示例#25
0
    def build_job_configs(self, args):
        """Hook to build job configurations
        """
        job_configs = {}

        ttype = args['ttype']
        (targets_yaml, sim) = NAME_FACTORY.resolve_targetfile(args)
        if sim is not None:
            raise ValueError("Found 'sim' argument on AnalyzeSED_SG config.")
        if targets_yaml is None:
            return job_configs

        targets = load_yaml(targets_yaml)
        config_yaml = 'config.yaml'

        if is_not_null(args['skydirs']):
            skydirs = args['skydirs']
        else:
            skydirs = None

        base_config = dict(roi_baseline=args['roi_baseline'],
                           make_plots=args['make_plots'],
                           non_null_src=args['non_null_src'])

        for target_name, target_list in targets.items():
            name_keys = dict(target_type=ttype,
                             target_name=target_name,
                             sim_name='random',
                             fullpath=True)
            if skydirs is None:
                target_dir = NAME_FACTORY.targetdir(**name_keys)
                skydir_path = None
            else:
                target_dir = NAME_FACTORY.sim_targetdir(**name_keys)
                skydir_path = os.path.join(target_dir, skydirs)
            config_path = os.path.join(target_dir, config_yaml)
            logfile = make_nfs_path(os.path.join(
                target_dir, "%s_%s.log" % (self.linkname, target_name)))
            job_config = base_config.copy()
            job_config.update(dict(config=config_path,
                                   profiles=target_list,
                                   skydirs=skydir_path,
                                   logfile=logfile))
            job_configs[target_name] = job_config

        return job_configs
示例#26
0
    def run_analysis(self, argv):
        """Run this analysis"""
        args = self._parser.parse_args(argv)

        if is_null(args.config):
            raise ValueError("Config yaml file must be specified")
        if is_null(args.rand_config):
            raise ValueError(
                "Random direction config yaml file must be specified")
        config = load_yaml(args.config)
        rand_config = load_yaml(args.rand_config)

        wcsgeom = self._make_wcsgeom_from_config(config)
        dir_dict = self._build_skydir_dict(wcsgeom, rand_config)

        if is_not_null(args.outfile):
            write_yaml(dir_dict, args.outfile)
示例#27
0
    def run_analysis(self, argv):
        """Run this analysis"""
        args = self._parser.parse_args(argv)

        if not HAVE_ST:
            raise RuntimeError(
                "Trying to run fermipy analysis, but don't have ST")

        if is_not_null(args.roi_baseline):
            gta = GTAnalysis.create(args.roi_baseline, args.config)
        else:
            gta = GTAnalysis(args.config,
                             logging={'verbosity': 3},
                             fileio={'workdir_regex': '\.xml$|\.npy$'})
        gta.print_roi()
        
        test_source = args.target
        gta.sed(test_source, outfile='sed_%s.fits' % 'FL8Y', make_plots=True)
        gta.extension(test_source, make_plots=True)
        return gta
示例#28
0
    def run_analysis(self, argv):
        """Run this analysis"""
        args = self._parser.parse_args(argv)

        if DMSKY_ROSTER_LIB:
            roster_lib = RosterLibrary()
            roster_dict = {}
        else:
            raise RuntimeError(
                "Can't load roster library, probably b/c old version of yaml is not compatible with dmsky"
            )

        if not args.rosters:
            raise RuntimeError("You must specify at least one target roster")

        if is_null(args.ttype):
            raise RuntimeError("You must specify a target type")

        if is_null(args.sims):
            sims = []
        else:
            sims = args.sims

        if is_null(args.alias_dict):
            aliases = None
        else:
            aliases = load_yaml(args.alias_dict)

        name_keys = dict(target_type=args.ttype, fullpath=True)
        config_file = NAME_FACTORY.ttypeconfig(**name_keys)

        if is_not_null(args.config):
            config_file = args.config

        for roster in args.rosters:
            rost = roster_lib.create_roster(roster)
            roster_dict[roster] = rost

        base_config = load_yaml(config_file)
        self._write_target_dirs(args.ttype, roster_dict, base_config, sims,
                                args.spatial_models, aliases)
示例#29
0
    def update_args(self, override_args):
        """Update the argument used to invoke the application

        Note that this will also update the dictionary of input
        and output files.

        Parameters
        -----------
        override_args : dict
            dictionary passed to the links

        """
        self.args = extract_arguments(override_args, self.args)
        self._map_arguments(self.args)

        scratch_dir = self.args.get('scratch', None)
        if is_not_null(scratch_dir):
            self._file_stage = FileStageManager(scratch_dir, '.')
        for link in self._links.values():
            link._set_file_stage(self._file_stage)
        self._latch_file_info()
示例#30
0
    def update_args(self, override_args):
        """Update the argument used to invoke the application

        Note that this will also update the dictionary of input
        and output files.

        Parameters
        -----------
        override_args : dict
            dictionary passed to the links

        """
        self.args = extract_arguments(override_args, self.args)
        self._map_arguments(self.args)

        scratch_dir = self.args.get('scratch', None)
        if is_not_null(scratch_dir):
            self._file_stage = FileStageManager(scratch_dir, '.')
        for link in self._links.values():
            link._set_file_stage(self._file_stage)
        self._latch_file_info()
示例#31
0
    def build_job_configs(self, args):
        """Hook to build job configurations
        """
        job_configs = {}

        ttype = args['ttype']
        (targets_yaml, sim) = NAME_FACTORY.resolve_targetfile(args)
        if targets_yaml is None:
            return job_configs

        config_yaml = 'config.yaml'
        config_override = args.get('config')
        if is_not_null(config_override):
            config_yaml = config_override

        targets = load_yaml(targets_yaml)

        base_config = dict(sim_profile=args['sim_profile'],
                           roi_baseline=args['roi_baseline'],
                           sim=sim,
                           nsims=args['nsims'],
                           seed=args['seed'])

        for target_name, target_list in targets.items():
            name_keys = dict(target_type=ttype,
                             target_name=target_name,
                             sim_name=sim,
                             fullpath=True)
            simdir = NAME_FACTORY.sim_targetdir(**name_keys)
            config_path = os.path.join(simdir, config_yaml)
            logfile = make_nfs_path(
                os.path.join(simdir,
                             "%s_%s.log" % (self.linkname, target_name)))
            job_config = base_config.copy()
            job_config.update(
                dict(config=config_path, logfile=logfile,
                     profiles=target_list))
            job_configs[target_name] = job_config

        return job_configs
示例#32
0
    def build_job_configs(self, args):
        """Hook to build job configurations
        """
        job_configs = {}

        ttype = args['ttype']
        (targets_yaml, sim) = NAME_FACTORY.resolve_targetfile(args)
        if targets_yaml is None:
            return job_configs

        config_yaml = 'config.yaml'
        config_override = args.get('config')
        if is_not_null(config_override):
            config_yaml = config_override

        rand_yaml = NAME_FACTORY.resolve_randconfig(args)

        targets = load_yaml(targets_yaml)

        base_config = dict(rand_config=rand_yaml)

        for target_name in targets.keys():
            name_keys = dict(target_type=ttype,
                             target_name=target_name,
                             sim_name=sim,
                             fullpath=True)
            simdir = NAME_FACTORY.sim_targetdir(**name_keys)
            config_path = os.path.join(simdir, config_yaml)
            outfile = os.path.join(simdir, 'skydirs.yaml')
            logfile = make_nfs_path(outfile.replace('yaml', 'log'))
            job_config = base_config.copy()
            job_config.update(dict(config=config_path,
                                   outfile=outfile,
                                   logfile=logfile))
            job_configs[target_name] = job_config

        return job_configs
示例#33
0
    def build_job_configs(self, args):
        """Hook to build job configurations
        """
        job_configs = {}

        ttype = args['ttype']
        (targets_yaml, sim) = NAME_FACTORY.resolve_targetfile(args)
        if targets_yaml is None:
            return job_configs

        config_yaml = 'config.yaml'
        config_override = args.get('config')
        if is_not_null(config_override):
            config_yaml = config_override

        rand_yaml = NAME_FACTORY.resolve_randconfig(args)

        targets = load_yaml(targets_yaml)

        base_config = dict(rand_config=rand_yaml)

        for target_name in targets.keys():
            name_keys = dict(target_type=ttype,
                             target_name=target_name,
                             sim_name=sim,
                             fullpath=True)
            simdir = NAME_FACTORY.sim_targetdir(**name_keys)
            config_path = os.path.join(simdir, config_yaml)
            outfile = os.path.join(simdir, 'skydirs.yaml')
            logfile = make_nfs_path(outfile.replace('yaml', 'log'))
            job_config = base_config.copy()
            job_config.update(
                dict(config=config_path, outfile=outfile, logfile=logfile))
            job_configs[target_name] = job_config

        return job_configs
示例#34
0
    def stack_roster(rost, ttype, channels, astro_prior_key, sim, seed):  #pylint: disable=too-many-arguments
        """ Stack all of the DMCastroData in a roster

        Parameters
        ----------

        rost : list
            List of the targets

        ttype : str
            Type of target, used for bookkeeping and file names

        channels : list
            List of the channels to convert

        j_prior_key : str
            String that identifies the type of prior on the J-factor

        sim : str
            String that specifies the simulation scenario

        seed : int or None
            Key for the simulation instance, used for bookkeeping and file names

        Returns
        -------

        output : dict
            Dictionary of `DMCastroData` objects, keyed by channel

        """
        component_dict = {}
        out_dict = {}
        for chan in channels:
            component_dict[chan] = []

        for target_key in rost:
            tokens = target_key.split(':')
            name_keys = dict(target_type=ttype,
                             target_name=tokens[0],
                             profile=tokens[1],
                             fullpath=True,
                             sim_name=sim,
                             seed="%06i" % seed,
                             astro_prior=astro_prior_key)

            if is_not_null(sim):
                dmlike_path = NAME_FACTORY.sim_dmlikefile(**name_keys)
            else:
                dmlike_path = NAME_FACTORY.dmlikefile(**name_keys)

            tab_m = Table.read(dmlike_path, hdu="MASSES")

            for chan in channels:
                if chan.find('_decay') >= 0:
                    decay = True
                    norm_type = 'tau'
                else:
                    decay = False
                    norm_type = 'sigmav'
                try:
                    tab_s = Table.read(dmlike_path, hdu=chan)
                except KeyError:
                    continue
                dm_castro = DMCastroData.create_from_tables(
                    tab_s, tab_m, chan, norm_type, decay)
                component_dict[chan].append(dm_castro)

        for chan, comps in list(component_dict.items()):
            if not comps:
                continue
            decay = chan.find('_decay') >= 0
            stacked = DMCastroData.create_from_stack(comps, decay=decay)
            out_dict[chan] = stacked

        return out_dict
示例#35
0
文件: fitting.py 项目: tuoyl/fermipy
    def run_analysis(self, argv):
        """Run this analysis"""
        args = self._parser.parse_args(argv)

        if not HAVE_ST:
            raise RuntimeError(
                "Trying to run fermipy analysis, but don't have ST")

        if args.load_baseline:
            gta = GTAnalysis.create(args.roi_baseline, args.config)
        else:
            gta = GTAnalysis(args.config,
                             logging={'verbosity': 3},
                             fileio={'workdir_regex': '\.xml$|\.npy$'})
            gta.setup()
            if is_not_null(args.input_pars):
                gta.load_parameters_from_yaml(args.input_pars)
            gta.write_roi(args.roi_baseline,
                          save_model_map=True,
                          save_weight_map=True,
                          make_plots=args.make_plots)

        src_list = get_src_names(gta)
        plotter = plotting.AnalysisPlotter(gta.config['plotting'],
                                           fileio=gta.config['fileio'],
                                           logging=gta.config['logging'])

        if is_null(args.fit_strategy):
            return

        fit_strategy = load_yaml(args.fit_strategy)
        npred_current = None
        npred_prev = None

        plots_only = False

        for fit_stage in fit_strategy:
            mask = fit_stage.get('mask', None)
            npred_threshold = fit_stage.get('npred_threshold', 1.0e4)
            frac_threshold = fit_stage.get('frac_threshold', 0.5)
            npred_frac = fit_stage.get('npred_frac', 0.9999)

            if plots_only:
                gta.load_roi("%s.npy" % fit_stage['key'])
                npred_current = set_wts_get_npred_wt(gta, mask)
                skip_list_region = get_unchanged(src_list,
                                                 npred_current,
                                                 npred_prev,
                                                 frac_threshold=frac_threshold)
            else:
                npred_current = set_wts_get_npred_wt(gta, mask)
                skip_list_region = get_unchanged(src_list,
                                                 npred_current,
                                                 npred_prev,
                                                 frac_threshold=frac_threshold)
                gta.optimize(npred_frac=npred_frac,
                             npred_threshold=npred_threshold,
                             skip=skip_list_region)

            snapshot(gta,
                     plotter,
                     fit_stage['key'],
                     make_plots=args.make_plots)
            npred_prev = npred_current
            npred_current = build_srcdict(gta, 'npred_wt')
示例#36
0
    def compute_castro_data(castro_data, spec_vals, xscan_vals, **kwargs):
        """ Convert CastroData object, i.e., Likelihood as a function of
        flux and energy flux, to a StackCastroData object, i.e., Likelihood as
        a function of stacking normalization and index

        Parameters
        ----------

        castro_data : `CastroData`
            Input data

        spec_vals : `numpy.array`
            Input spectra

        xscan_vals : `numpy.array`
            Values for scan variables


        Returns
        -------

        output : `StackCastroData`
            The stacking-space likelihood curves


        """
        ref_stack = kwargs.get('ref_stack', 1.)
        norm_factor = kwargs.pop('norm_factor', 1.)
        spec_name = kwargs.pop('spec_name')
        astro_prior = kwargs.pop('astro_prior')
        n_xval = len(xscan_vals)
        n_yval = kwargs.get('nystep', 200)

        norm_limits = castro_data.getLimits(1e-5)
        # This puts the spectrum in units of the reference spectrum
        # This means that the scan values will be expressed
        # In units of the reference spectra as well
        spec_vals /= norm_factor

        norm_vals = np.ndarray((n_xval, n_yval))
        dll_vals = np.ndarray((n_xval, n_yval))
        mle_vals = np.ndarray((n_xval))
        nll_offsets = np.ndarray((n_xval))

        scan_mask = np.ones((n_xval), bool)
        # for i, index in enumerate(xscan_vals):
        for i in range(n_xval):
            max_ratio = 1. / ((spec_vals[i] / norm_limits).max())
            log_max_ratio = np.log10(max_ratio)
            norm_vals[i][0] = 10**(log_max_ratio - 5)
            norm_vals[i][1:] = np.logspace(log_max_ratio - 4,
                                           log_max_ratio + 4, n_yval - 1)
            test_vals = (np.expand_dims(spec_vals[i], 1) *
                         (np.expand_dims(norm_vals[i], 1).T))
            dll_vals[i, 0:] = castro_data(test_vals)
            mle_vals[i] = norm_vals[i][dll_vals[i].argmin()]
            nll_offsets[i] = dll_vals[i].min()
            dll_vals[i] -= nll_offsets[i]

            msk = np.isfinite(dll_vals[i])
            if not msk.any():
                print("Skipping scan value %0.2e for spec %s" %
                      (xscan_vals[i], spec_name))
                scan_mask[i] = False
                continue

            if is_not_null(astro_prior):
                try:
                    lnlfn = castro.LnLFn(norm_vals[i], dll_vals[i], 'dummy')
                    lnlfn_prior = LnLFn_norm_prior(lnlfn, astro_prior)
                    dll_vals[i, 0:] = lnlfn_prior(norm_vals[i])
                    nll_offsets[i] = dll_vals[i].min()
                except ValueError:
                    print("Skipping index %0.2e for spec %s" %
                          (xscan_vals[i], spec_name))
                    scan_mask[i] = False
                    dll_vals[i, 0:] = np.nan * np.ones((n_yval))
                    nll_offsets[i] = np.nan

        kwcopy = kwargs.copy()
        kwcopy['xscan_vals'] = xscan_vals[scan_mask]
        kwcopy['astro_prior'] = astro_prior

        # Here we convert the normalization values to standard units
        norm_vals *= ref_stack
        stack_castro = StackCastroData(norm_vals[scan_mask],
                                       dll_vals[scan_mask],
                                       nll_offsets[scan_mask], **kwcopy)
        return stack_castro
示例#37
0
    def run_analysis(self, argv):
        """Run this analysis"""
        args = self._parser.parse_args(argv)

        if not HAVE_ST:
            raise RuntimeError(
                "Trying to run fermipy analysis, but don't have ST")

        if args.load_baseline:
            gta = GTAnalysis.create(args.roi_baseline,
                                    args.config)
        else:
            gta = GTAnalysis(args.config,
                             logging={'verbosity': 3},
                             fileio={'workdir_regex': '\.xml$|\.npy$'})
            gta.setup()
            if is_not_null(args.input_pars):
                gta.load_parameters_from_yaml(args.input_pars)
            gta.write_roi(args.roi_baseline,
                          save_model_map=True,
                          save_weight_map=True,
                          make_plots=args.make_plots)

        src_list = get_src_names(gta)
        plotter = plotting.AnalysisPlotter(gta.config['plotting'],
                                           fileio=gta.config['fileio'],
                                           logging=gta.config['logging'])

        if is_null(args.fit_strategy):
            return

        fit_strategy = load_yaml(args.fit_strategy)
        npred_current = None
        npred_prev = None
        
        plots_only = False

        for fit_stage in fit_strategy:
            mask = fit_stage.get('mask', None)
            npred_threshold = fit_stage.get('npred_threshold', 1.0e4)
            frac_threshold = fit_stage.get('frac_threshold', 0.5)
            npred_frac = fit_stage.get('npred_frac', 0.9999)

            if plots_only:
                gta.load_roi("%s.npy" % fit_stage['key'])
                npred_current =  set_wts_get_npred_wt(gta, mask)
                skip_list_region = get_unchanged(src_list,
                                                 npred_current,
                                                 npred_prev,
                                                 frac_threshold=frac_threshold)
            else:
                npred_current =  set_wts_get_npred_wt(gta, mask)
                skip_list_region = get_unchanged(src_list,
                                                 npred_current,
                                                 npred_prev,
                                                 frac_threshold=frac_threshold)     
                gta.optimize(npred_frac=npred_frac, 
                             npred_threshold=npred_threshold,
                             skip=skip_list_region)
            
            snapshot(gta, plotter, fit_stage['key'], make_plots=args.make_plots)
            npred_prev = npred_current
            npred_current = build_srcdict(gta, 'npred_wt')
示例#38
0
    def convert_sed(spec_table, channels, sed_file, outfile, limitfile,
                    **kwargs):
        """Convert a single SED to DM space.

        Parameters
        ----------

        spec_table : `DMSpecTable`
            Object with all the DM spectra

        channels : list
            List of the channels to convert

        sed_file : str
            Path to the SED file

        outfile : str
            Path to write the output `DMCastroData` object to

        limitfile : str
            Path to write the output limits to.


        Keyword arguments
        -----------------

        norm_type : str
            Normalization type to use

        j_factor : dict
            Dictionary with information about the J-factor

        d_factor : dict
            Dictionary with information about the J-factor

        clobber : bool
            Flag to overwrite existing files.



        """
        norm_type = kwargs.get('norm_type', 'eflux')
        j_factor = kwargs.get('j_factor', None)
        d_factor = kwargs.get('d_factor', None)
        clobber = kwargs.get('clobber', False)

        use_chans = ConvertCastro.select_channels(channels, sed_file)

        exttype = os.path.splitext(sed_file)[-1]
        if exttype in ['.fits', '.npy']:
            sed = CastroData.create_from_sedfile(sed_file, norm_type)
        elif exttype in ['.yaml']:
            sed = CastroData.create_from_yamlfile(sed_file)
        else:
            raise ValueError("Can not read file type %s for SED" % exttype)

        c_list, t_list, n_list = ConvertCastro.convert_sed_to_dm(
            spec_table,
            sed,
            use_chans,
            norm_type=norm_type,
            j_val=j_factor,
            d_val=d_factor)

        if is_not_null(outfile):
            fits_utils.write_tables_to_fits(outfile,
                                            t_list,
                                            clobber=clobber,
                                            namelist=n_list)

        if is_not_null(limitfile):
            mass_table = t_list[-1]
            _, t_list_lim, n_list_lim = ConvertCastro.extract_dm_limits(
                c_list, use_chans, [0.68, 0.95], mass_table)
            fits_utils.write_tables_to_fits(limitfile,
                                            t_list_lim,
                                            clobber=clobber,
                                            namelist=n_list_lim)
示例#39
0
    def run_analysis(self, argv):
        """Run this analysis"""
        args = self._parser.parse_args(argv)

        norm_type = 'eflux'

        spec_table = DMSpecTable.create_from_fits(args.specfile)
        profile = load_yaml(args.astro_value_file)

        channels = spec_table.channel_names

        j_factor = None
        d_factor = None

        j_value = profile.get('j_integ', None)
        j_sigma = profile.get('j_sigma', None)

        if is_null(j_value):
            j_factor = None
        elif is_null(args.astro_prior) or is_null(j_sigma) or j_sigma == 0.0:
            j_factor = j_value
        else:
            j_factor = dict(functype=args.astro_prior,
                            j_value=j_value,
                            mu=j_value,
                            sigma=j_sigma)

        d_value = profile.get('d_integ', None)
        d_sigma = profile.get('d_sigma', None)

        if is_null(d_value):
            d_factor = None
        elif is_null(args.astro_prior) or is_null(d_sigma) or d_sigma == 0.0:
            d_factor = d_value
        else:
            d_factor = dict(functype=args.astro_prior,
                            d_value=d_value,
                            mu=d_value,
                            sigma=d_sigma)

        if args.nsims < 0:
            seedlist = [None]
        else:
            seedlist = list(range(args.seed, args.seed + args.nsims))

        for seed in seedlist:
            sedfile = args.sed_file
            outfile = args.outfile
            limitfile = args.limitfile
            if seed is not None:
                sedfile = sedfile.replace('_SEED.fits', '_%06i.fits' % seed)
                if is_not_null(outfile):
                    outfile = outfile.replace('_SEED.fits',
                                              '_%06i.fits' % seed)
                if is_not_null(limitfile):
                    limitfile = limitfile.replace('_SEED.fits',
                                                  '_%06i.fits' % seed)

            self.convert_sed(spec_table,
                             channels,
                             sedfile,
                             outfile,
                             limitfile,
                             norm_type=norm_type,
                             j_factor=j_factor,
                             d_factor=d_factor,
                             clober=args.clobber)
示例#40
0
    def build_job_configs(self, args):
        """Hook to build job configurations
        """
        job_configs = {}

        ttype = args['ttype']
        (targets_yaml, sim) = NAME_FACTORY.resolve_targetfile(args)
        if targets_yaml is None:
            return job_configs

        specfile = NAME_FACTORY.resolve_specfile(args)

        targets = load_yaml(targets_yaml)

        astro_priors = args['astro_priors']
        clobber = args['clobber']

        if is_not_null(sim):
            is_sim = True
            nsims = args['nsims']
            seed = args['seed']
        else:
            is_sim = False
            nsims = -1
            seed = -1

        base_config = dict(specfile=specfile,
                           nsims=nsims,
                           seed=seed,
                           clobber=clobber)

        for target_name, profile_list in list(targets.items()):
            for profile in profile_list:
                for astro_prior in astro_priors:
                    full_key = "%s:%s:%s" % (target_name, profile, astro_prior)
                    target_version = profile.split('_')[0]
                    name_keys = dict(target_type=ttype,
                                     target_name=target_name,
                                     target_version=target_version,
                                     profile=profile,
                                     astro_prior=astro_prior,
                                     fullpath=True)
                    if is_sim:
                        name_keys['sim_name'] = sim
                        sed_file = NAME_FACTORY.sim_sedfile(**name_keys)
                        astro_value_yaml = NAME_FACTORY.sim_astro_valuefile(
                            **name_keys)
                        outfile = NAME_FACTORY.sim_dmlikefile(**name_keys)
                        limitfile = NAME_FACTORY.sim_dmlimitsfile(**name_keys)
                        full_key += ":%s" % sim
                    else:
                        sed_file = NAME_FACTORY.sedfile(**name_keys)
                        astro_value_yaml = NAME_FACTORY.astro_valuefile(
                            **name_keys)
                        outfile = NAME_FACTORY.dmlikefile(**name_keys)
                        limitfile = NAME_FACTORY.dmlimitsfile(**name_keys)

                    logfile = make_nfs_path(outfile.replace('.fits', '.log'))
                    job_config = base_config.copy()
                    job_config.update(
                        dict(sed_file=sed_file,
                             astro_value_file=astro_value_yaml,
                             astro_prior=astro_prior,
                             outfile=outfile,
                             limitfile=limitfile,
                             logfile=logfile))

                    job_configs[full_key] = job_config

        return job_configs