示例#1
0
def secondary_prediction(mask,
                         vol,
                         config2,
                         model2_path=None,
                         preprocess_method2=None,
                         norm_params2=None,
                         overlap_factor=0.9):
    model2 = load_old_model(get_last_model_path(model2_path))
    pred = mask
    bbox_start, bbox_end = find_bounding_box(pred)
    check_bounding_box(pred, bbox_start, bbox_end)
    padding = [16, 16, 8]
    if padding is not None:
        bbox_start = np.maximum(bbox_start - padding, 0)
        bbox_end = np.minimum(bbox_end + padding, mask.shape)
    data = vol.astype(np.float)[bbox_start[0]:bbox_end[0],
                                bbox_start[1]:bbox_end[1],
                                bbox_start[2]:bbox_end[2]]

    data = preproc_and_norm(data, preprocess_method2, norm_params2)

    prediction = \
        patch_wise_prediction(model=model2,
                              data=np.expand_dims(data, 0),
                              overlap_factor=overlap_factor,
                              patch_shape=config2["patch_shape"] + [config2["patch_depth"]])
    prediction = prediction.squeeze()
    padding2 = list(zip(bbox_start, np.array(vol.shape) - bbox_end))
    print(padding2)
    print(prediction.shape)
    prediction = np.pad(prediction,
                        padding2,
                        mode='constant',
                        constant_values=0)
    return prediction
示例#2
0
def main(input_mat_path,
         output_mat_path,
         overlap_factor,
         config,
         model_path,
         preprocess_method=None,
         norm_params=None,
         config2=None,
         model2_path=None,
         preprocess_method2=None,
         norm_params2=None):
    print(model_path)
    model = load_old_model(get_last_model_path(model_path))
    print('Loading mat from {}...'.format(input_mat_path))
    mat = loadmat(input_mat_path)
    print('Predicting mask...')
    data = mat['volume'].astype(np.float)

    data = preproc_and_norm(data, preprocess_method, norm_params)

    prediction = \
        patch_wise_prediction(model=model,
                              data=np.expand_dims(data, 0),
                              overlap_factor=overlap_factor,
                              patch_shape=config["patch_shape"] + [config["patch_depth"]])

    print('Post-processing mask...')
    if prediction.shape[-1] > 1:
        prediction = prediction[..., 1]
    prediction = prediction.squeeze()
    print("Storing prediction in [7-9], 7 should be the best...")
    mat['masks'][0, 9] = \
        process_pred(prediction, gaussian_std=0, threshold=0.2)  # .astype(np.uint8)
    mat['masks'][0, 8] = \
        process_pred(prediction, gaussian_std=1, threshold=0.5)  # .astype(np.uint8)
    mat['masks'][0, 7] = \
        process_pred(prediction, gaussian_std=0.5, threshold=0.5)  # .astype(np.uint8)

    if config2 is not None:
        print('Making secondary prediction... [6]')
        prediction = secondary_prediction(
            mat['masks'][0, 7],
            vol=mat['volume'].astype(np.float),
            config2=config2,
            model2_path=model2_path,
            preprocess_method2=preprocess_method2,
            norm_params2=norm_params2,
            overlap_factor=0.9)
        mat['masks'][0, 6] = \
            process_pred(prediction, gaussian_std=0, threshold=0.2)  # .astype(np.uint8)
        mat['masks'][0, 5] = \
            process_pred(prediction, gaussian_std=1, threshold=0.5)  # .astype(np.uint8)
        mat['masks'][0, 4] = \
            process_pred(prediction, gaussian_std=0.5, threshold=0.5)  # .astype(np.uint8)

    print('Saving mat to {}'.format(output_mat_path))
    savemat(output_mat_path, mat)
    print('Finished.')
示例#3
0
def main(input_path,
         output_path,
         overlap_factor,
         config,
         model_path,
         preprocess_method=None,
         norm_params=None,
         config2=None,
         model2_path=None,
         preprocess_method2=None,
         norm_params2=None):
    print(model_path)
    model = load_old_model(get_last_model_path(model_path))
    print('Loading mat from {}...'.format(input_path))
    nifti = read_img(input_path)
    print('Predicting mask...')
    data = nifti.get_fdata().astype(np.float)

    data = preproc_and_norm(data, preprocess_method, norm_params)

    prediction = \
        patch_wise_prediction(model=model,
                              data=np.expand_dims(data, 0),
                              overlap_factor=overlap_factor,
                              patch_shape=config["patch_shape"] + [config["patch_depth"]])
    nib.save(prediction, os.path.join(output_path, 'pred.nii'))

    print('Post-processing mask...')
    if prediction.shape[-1] > 1:
        prediction = prediction[..., 1]
    prediction = prediction.squeeze()
    print("Storing prediction in [7-9], 7 should be the best...")
    mask = process_pred(prediction, gaussian_std=0.5,
                        threshold=0.5)  # .astype(np.uint8)

    if config2 is not None:
        print('Making secondary prediction... [6]')
        prediction = secondary_prediction(
            mask,
            vol=nifti.get_fdata().astype(np.float),
            config2=config2,
            model2_path=model2_path,
            preprocess_method2=preprocess_method2,
            norm_params2=norm_params2,
            overlap_factor=0.9)
        nib.save(prediction, os.path.join(output_path, 'pred_roi.nii'))

    print('Saving to {}'.format(output_path))
    print('Finished.')
def get_prediction(data, model, augment, num_augments, return_all_preds, overlap_factor, config):
    if augment is not None:
        patch_shape = config["patch_shape"] + [config["patch_depth"]]
        if augment == 'all':
            prediction = predict_augment(data, model=model, overlap_factor=overlap_factor, num_augments=num_augments, patch_shape=patch_shape)
        elif augment == 'flip':
            prediction = predict_flips(data, model=model, overlap_factor=overlap_factor, patch_shape=patch_shape, config=config)
        else:
            raise ("Unknown augmentation {}".format(augment))
        if not return_all_preds:
            prediction = np.median(prediction, axis=0)
    else:
        prediction = \
            patch_wise_prediction(model=model,
                                  data=np.expand_dims(data, 0),
                                  overlap_factor=overlap_factor,
                                  patch_shape=config["patch_shape"] + [config["patch_depth"]])
    prediction = prediction.squeeze()
    return prediction
示例#5
0
def get_prediction(sid, model, config, slices_range=None):
    # Assumes the data_file has been updated
    test_data = np.asarray([data_file.root.data[sid]])
    test_truth_data = np.asarray([data_file.root.truth[sid]])
    test_pred_data = np.asarray([data_file.root.pred[sid]])
    if config["use_augmentations"]:  # TODO - add this key to configs, default False
        prediction = predict_augment(data=test_data, model=model, overlap_factor=overlap_factor,
                                     patch_shape=config["patch_shape"])
    else:
        prediction, _ = \
            patch_wise_prediction(model=model, data=test_data, overlap_factor=overlap_factor,
                                  patch_shape=config["patch_shape"], permute=config["augment"]["permute"],
                                  truth_data=test_truth_data, prev_truth_index=config["prev_truth_index"],
                                  prev_truth_size=config["prev_truth_size"],
                                  pred_data=test_pred_data, pred_index=config["pred_index"],
                                  pred_size=config["pred_size"],
                                  slices_range=slices_range
                                  )
    prediction = prediction.squeeze()
    return prediction
示例#6
0
def main(input_mat_path, output_mat_path, config, overlap_factor, model_path, preprocess_method=None, norm_params=None):
    print(model_path)
    model = load_old_model(get_last_model_path(model_path))
    print('Loading mat from {}...'.format(input_mat_path))
    mat = loadmat(input_mat_path)
    print('Predicting mask...')
    data = mat['volume'].astype(np.float)

    if preprocess_method is not None:
        print('Applying preprocess by {}...'.format(preprocess_method))
        if preprocess_method == 'window_1_99':
            data = window_intensities_data(data)
        else:
            raise Exception('Unknown preprocess: {}'.format(preprocess_method))

    if norm_params is not None and any(norm_params.values()):
        data = normalize_data(data, mean=norm_params['mean'], std=norm_params['std'])

    prediction = \
        patch_wise_prediction(model=model,
                              data=np.expand_dims(data, 0),
                              overlap_factor=overlap_factor,
                              patch_shape=config["patch_shape"] + [config["patch_depth"]])

    print('Post-processing mask...')
    if prediction.shape[-1] > 1:
        prediction = prediction[..., 1]
    prediction = prediction.squeeze()
    mat['masks'][0, 9] = \
        process_pred(prediction, gaussian_std=0, threshold=0.2)  # .astype(np.uint8)
    mat['masks'][0, 8] = \
        process_pred(prediction, gaussian_std=1, threshold=0.5)  # .astype(np.uint8)
    mat['masks'][0, 7] = \
        process_pred(prediction, gaussian_std=0.5, threshold=0.5)  # .astype(np.uint8)
    print('Saving mat to {}'.format(output_mat_path))
    savemat(output_mat_path, mat)
    print('Finished.')
示例#7
0
def main(configs_folder,
         data_folder,
         model_folder,
         subject_id,
         validated_ind,
         overlap_factor,
         propagate,
         pred_path,
         flip=False):

    vol, truth, affine, header = get_subject_id_data(data_folder, subject_id)

    if flip:
        vol = vol[:, :, ::-1]
        truth = truth[:, :, ::-1]
        if validated_ind >= 0:
            validated_ind = truth.shape[-1] - validated_ind - 1

    inflated_vol = np.expand_dims(vol, axis=0).astype(np.float)
    inflated_vol, _, _ = normalize_data_storage_each(inflated_vol)
    inflated_truth = np.expand_dims(truth, axis=0)
    pred = nib.load(pred_path).get_data()
    pred_bin = postprocess_prediction(pred)

    if flip:
        pred = pred[:, :, ::-1]
        pred_bin = pred_bin[:, :, ::-1]

    config, model = get_config_and_model(configs_folder, model_folder)
    print(f"Initial DICE: {dice_coefficient_np(truth, pred_bin)}")
    if validated_ind < 0:
        validated_ind = get_placenta_start_ind(truth)
    starting_slice = get_starting_slice_ind(validated_ind,
                                            config["prev_truth_index"])
    while not starting_slice:
        validated_ind += 1
        starting_slice = get_starting_slice_ind(validated_ind,
                                                config["prev_truth_index"])
    fixing_slice = starting_slice + config["truth_index"]
    imsave('before.png', pred[:, :, fixing_slice])
    if not starting_slice or starting_slice >= vol.shape[-1]:
        print(f"Error! Validated slice {validated_ind} is out of range")
        sys.exit(0)

    new_pred, new_var = patch_wise_prediction(
        model,
        inflated_vol,
        config["patch_shape"] + [config["patch_depth"]],
        overlap_factor,
        is3d=config["3D"],
        truth_data=inflated_truth,
        prev_truth_index=config["prev_truth_index"],
        batch_size=16,
        prev_truth_size=config["prev_truth_size"],
        specific_slice=starting_slice)
    new_pred = new_pred.squeeze()
    # d_before = dice_coefficient_np(truth[:,:,fixing_slice], pred_bin[:,:,fixing_slice])
    pred[:, :, fixing_slice] = new_pred[:, :, fixing_slice]
    imsave('after.png', pred[:, :, fixing_slice])
    pred_bin = postprocess_prediction(pred)
    #print(f"DICE after updating slice {fixing_slice}: {dice_coefficient_np(truth, pred_bin)}")
    validated_ind = fixing_slice
    inflated_truth[0][:, :, validated_ind] = pred_bin[:, :, fixing_slice]
    starting_slice = get_starting_slice_ind(validated_ind,
                                            config["prev_truth_index"])

    if propagate:
        while starting_slice <= (vol.shape[-1] - config["patch_depth"]):
            fixing_slice = starting_slice + config["truth_index"]
            new_pred, new_var = patch_wise_prediction(
                model,
                inflated_vol,
                config["patch_shape"] + [config["patch_depth"]],
                overlap_factor,
                is3d=config["3D"],
                truth_data=inflated_truth,
                prev_truth_index=config["prev_truth_index"],
                prev_truth_size=config["prev_truth_size"],
                specific_slice=starting_slice,
                batch_size=16)
            new_pred = new_pred.squeeze()
            pred[:, :, fixing_slice] = new_pred[:, :, fixing_slice]
            pred_bin = postprocess_prediction(pred)
            #print(f"DICE after updating slice {fixing_slice}: {dice_coefficient_np(truth, pred_bin)}")
            validated_ind = fixing_slice
            inflated_truth[0][:, :, validated_ind] = pred_bin[:, :,
                                                              fixing_slice]
            starting_slice = get_starting_slice_ind(validated_ind,
                                                    config["prev_truth_index"])
    print(
        f"DICE after updating slice {fixing_slice}: {dice_coefficient_np(truth, pred_bin)}"
    )
    if flip:
        pred = pred[:, :, ::-1]
        truth = truth[:, :, ::-1]
    return pred, truth
示例#8
0
def main(pred_dir,
         config,
         split='test',
         overlap_factor=1,
         preprocess_method=None):
    padding = [16, 16, 8]
    prediction2_dir = os.path.abspath(
        os.path.join(config['base_dir'], 'predictions2', split))
    model = load_old_model(get_last_model_path(config["model_file"]))
    with open(os.path.join(opts.config_dir, 'norm_params.json'), 'r') as f:
        norm_params = json.load(f)

    for sample_folder in glob(os.path.join(pred_dir, split, '*')):
        mask_path = os.path.join(sample_folder, 'prediction.nii.gz')
        truth_path = os.path.join(sample_folder, 'truth.nii.gz')

        subject_id = Path(sample_folder).name
        dest_folder = os.path.join(prediction2_dir, subject_id)
        Path(dest_folder).mkdir(parents=True, exist_ok=True)

        truth = nib.load(truth_path)
        nib.save(truth, os.path.join(dest_folder, Path(truth_path).name))

        mask = nib.load(mask_path)
        mask = process_pred(mask.get_data(), gaussian_std=0.5, threshold=0.5)
        bbox_start, bbox_end = find_bounding_box(mask)
        check_bounding_box(mask, bbox_start, bbox_end)
        if padding is not None:
            bbox_start = np.maximum(bbox_start - padding, 0)
            bbox_end = np.minimum(bbox_end + padding, mask.shape)
        print("BBox: {}-{}".format(bbox_start, bbox_end))

        volume = nib.load(
            os.path.join(original_data_folder, subject_id, 'volume.nii'))
        orig_volume_shape = np.array(volume.get_data().shape)
        volume = cut_bounding_box(volume, bbox_start,
                                  bbox_end).get_data().astype(np.float)

        if preprocess_method is not None:
            print('Applying preprocess by {}...'.format(preprocess_method))
            if preprocess_method == 'window_1_99':
                volume = window_intensities_data(volume)
            else:
                raise Exception(
                    'Unknown preprocess: {}'.format(preprocess_method))

        if norm_params is not None and any(norm_params.values()):
            volume = normalize_data(volume,
                                    mean=norm_params['mean'],
                                    std=norm_params['std'])

        prediction = patch_wise_prediction(model=model,
                                           data=np.expand_dims(volume, 0),
                                           patch_shape=config["patch_shape"] +
                                           [config["patch_depth"]],
                                           overlap_factor=overlap_factor)
        prediction = prediction.squeeze()

        padding2 = list(zip(bbox_start, orig_volume_shape - bbox_end))
        print(padding2)
        prediction = np.pad(prediction,
                            padding2,
                            mode='constant',
                            constant_values=0)
        assert all(
            [s1 == s2 for s1, s2 in zip(prediction.shape, orig_volume_shape)])
        prediction = get_image(prediction)
        nib.save(prediction, os.path.join(dest_folder, Path(mask_path).name))
示例#9
0
    subject_id = data_file.root.subject_ids[sid]
    print("In ID {}".format(subject_id))
    os.mkdir(os.path.join(output_prediction_dir, subject_id))
    test_data = np.asarray([data_file.root.data[sid]])
    test_truth_data = np.asarray([data_file.root.truth[sid]])

    # Get all predictions
    for i, model in enumerate(step_1_networks):
        config = step_1_configs[i]
        # step 1 - no use of context for prediction
        if config["use_augmentations"]: # TODO - add this key to configs, default False
            prediction = predict_augment(data=test_data, model=model, overlap_factor=overlap_factor,
                                         patch_shape=config["patch_shape"])
        else:
            prediction, _ = \
                patch_wise_prediction(model=model, data=test_data, overlap_factor=overlap_factor,
                                      patch_shape=config["patch_shape"], permute=config["augment"]["permute"])
        prediction = prediction.squeeze()
        prediction_image = get_image(prediction) # NIB format
        filename = os.path.join(output_prediction_dir, subject_id, "prediction_{}.nii.gz".format(i))
        prediction_image.to_filename(filename)

        if i > 0:
            avg_pred += prediction
        else:
            avg_pred = prediction

    # Get the final averaged prediction and write to file
    avg_pred /= n_step_1_models
    nib.save(nib.Nifti1Image(avg_pred, prediction_image.affine, header=prediction_image.header),
             os.path.join(output_prediction_dir, subject_id, f'averaged_prediction.nii'))
    pred_storage[sid] = np.asarray(avg_pred).astype(np.float)