def test_SdA(finetune_lr=0.1, pretraining_epochs=2, pretrain_lr=0.001, training_epochs=2, dataset='mnist.pkl.gz', batch_size=1): """ Demonstrates how to train and test a stochastic denoising autoencoder. This is demonstrated on MNIST. :type learning_rate: float :param learning_rate: learning rate used in the finetune stage (factor for the stochastic gradient) :type pretraining_epochs: int :param pretraining_epochs: number of epoch to do pretraining :type pretrain_lr: float :param pretrain_lr: learning rate to be used during pre-training :type n_iter: int :param n_iter: maximal number of iterations ot run the optimizer :type dataset: string :param dataset: path the the pickled dataset """ data_path = '/Applications/MAMP/htdocs/DeepLearningTutorials/data/' # Use the following command if you want to run the dA in production # THEANO_FLAGS='floatX=float32,device=gpu0,nvcc.fastmath=True,cuda.root=/usr/local/cuda,mode=FAST_RUN' python SdA_v2.py #data_path = '/home/ubuntu/DeepLearningTutorials/data/' datasets = load_data(dataset) train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_train_batches /= batch_size # numpy random generator # start-snippet-3 numpy_rng = numpy.random.RandomState(89677) print '... building the model' # construct the stacked denoising autoencoder class # sda = SdA( # numpy_rng=numpy_rng, # n_ins=128 * 128, # hidden_layers_sizes=[1000, 1000], # n_outs=21, # data_path=data_path # ) sda = SdA( numpy_rng=numpy_rng, n_ins=128 * 128 * 3, hidden_layers_sizes=[1000, 1000], n_outs=3, data_path=data_path ) # end-snippet-3 start-snippet-4 ######################### # PRETRAINING THE MODEL # ######################### print '... getting the pretraining functions' pretraining_fns = sda.pretraining_functions(train_set_x=train_set_x, batch_size=batch_size) print '... pre-training the model' start_time = timeit.default_timer() ## Pre-train layer-wise corruption_levels = [.1, .2, .3] for i in xrange(sda.n_layers): # go through pretraining epochs for epoch in xrange(pretraining_epochs): # go through the training set c = [] for batch_index in xrange(n_train_batches): c.append(pretraining_fns[i](index=batch_index, corruption=corruption_levels[i], lr=pretrain_lr)) print 'Pre-training layer %i, epoch %d, cost ' % (i, epoch), print numpy.mean(c) end_time = timeit.default_timer() print >> sys.stderr, ('The pretraining code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) from utils import tile_raster_images try: import PIL.Image as Image except ImportError: import Image # image = Image.fromarray(tile_raster_images( # X=sda.dA_layers[0].W.get_value(borrow=True).T, # img_shape=(128, 128), tile_shape=(10, 10), # tile_spacing=(1, 1))) # print sda.dA_layers[1].W.get_value(borrow=True).T.shape # print sda.dA_layers[0].W.get_value(borrow=True).T.shape # image = Image.fromarray(tile_raster_images( # X=sda.dA_layers[1].W.get_value(borrow=True).T, # img_shape=(36, 36), tile_shape=(10, 10), # tile_spacing=(1, 1))) # image.save('filters_corruption_30.png') # end-snippet-4 ######################## # FINETUNING THE MODEL # ######################## # get the training, validation and testing function for the model print '... getting the finetuning functions' train_fn, validate_model, test_model = sda.build_finetune_functions( datasets=datasets, batch_size=batch_size, learning_rate=finetune_lr ) print '... finetunning the model' # early-stopping parameters patience = 10 * n_train_batches # look as this many examples regardless patience_increase = 2. # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_validation_loss = numpy.inf test_score = 0. start_time = timeit.default_timer() done_looping = False epoch = 0 while (epoch < training_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): minibatch_avg_cost = train_fn(minibatch_index) iter = (epoch - 1) * n_train_batches + minibatch_index if (iter + 1) % validation_frequency == 0: validation_losses = validate_model() this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if ( this_validation_loss < best_validation_loss * improvement_threshold ): patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = test_model() test_score = numpy.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error of ' 'best model %f %%') % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.)) if patience <= iter: done_looping = True break end_time = timeit.default_timer() print( ( 'Optimization complete with best validation score of %f %%, ' 'on iteration %i, ' 'with test performance %f %%' ) % (best_validation_loss * 100., best_iter + 1, test_score * 100.) ) print >> sys.stderr, ('The training code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) # x = T.matrix('x') # index_1 = T.lscalar() # index to a [mini]batch # index_2 = T.lscalar() # index to a [mini]batch # getHV = sda.dA_layers[0].get_hidden_values(x) # getHiddenValues = theano.function( # [index_1,index_2], # getHV, # givens={ # x: train_set_x[index_1:index_2] # } # ) # print getHiddenValues(0,len(train_set_x.get_value(borrow=True))).shape # da1output = T.matrix('da1output') # getHV2 = sda.dA_layers[1].get_hidden_values(da1output) # getHiddenValues2 = theano.function( # [da1output], # getHV2 # ) # #print getHiddenValues2(getHiddenValues(0,1)).shape # X = getHiddenValues2(getHiddenValues(0,len(train_set_x.get_value(borrow=True)))) sda.save_weights() # sda2 = SdA( # numpy_rng=numpy_rng, # n_ins=128 * 128, # hidden_layers_sizes=[1000, 1000], # n_outs=21, # data_path=data_path # ) sda2 = SdA( numpy_rng=numpy_rng, n_ins=128 * 128 * 3, hidden_layers_sizes=[1000, 1000], n_outs=3, data_path=data_path ) sda2.load_weights() #print sda2.dA_layers[1].W.get_value(borrow=True).shape x = T.matrix('x') index_1 = T.lscalar() # index to a [mini]batch index_2 = T.lscalar() # index to a [mini]batch getHV = sda2.dA_layers[0].get_hidden_values(x) getHiddenValues = theano.function( [index_1,index_2], getHV, givens={ x: train_set_x[index_1:index_2] } ) #print getHiddenValues(0,len(train_set_x.get_value(borrow=True))).shape print getHiddenValues(0,1) da1output = T.matrix('da1output') getHV2 = sda2.dA_layers[1].get_hidden_values(da1output) getHiddenValues2 = theano.function( [da1output], getHV2 ) #print getHiddenValues2(getHiddenValues(0,1)).shape X = getHiddenValues2(getHiddenValues(0,len(train_set_x.get_value(borrow=True)))) print X.shape # print X.shape # da2output = T.matrix('da2output') # getHV3 = sda.dA_layers[2].get_hidden_values(da2output) # getHiddenValues3 = theano.function( # [da2output], # getHV3 # ) # print getHiddenValues3([getHiddenValues2(0,1)]) from fetex_image import FetexImage pkl_file = open(data_path + 'im_index.pkl', 'rb') im_index = cPickle.load(pkl_file) fe = FetexImage(verbose=True,support_per_class=10000,data_path=data_path, dataset='categories', mode='RGB') fe.im_index = im_index # print im_index[0] # print im_index[1] #X_compressed = getHiddenValues(0,100) X_compressed = X #print X_compressed.shape #fe.dimReductionSdA(X) fe.similarImages(X_compressed)
def test_dA(learning_rate=0.1, training_epochs=50, dataset='mnist.pkl.gz', batch_size=20, output_folder='dA_plots'): """ This demo is tested on MNIST :type learning_rate: float :param learning_rate: learning rate used for training the DeNosing AutoEncoder :type training_epochs: int :param training_epochs: number of epochs used for training :type dataset: string :param dataset: path to the picked dataset """ datasets = load_data(dataset) train_set_x, train_set_y = datasets[0] # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size # start-snippet-2 # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch x = T.matrix('x') # the data is presented as rasterized images # end-snippet-2 if not os.path.isdir(output_folder): os.makedirs(output_folder) os.chdir(output_folder) #################################### # BUILDING THE MODEL NO CORRUPTION # #################################### rng = numpy.random.RandomState(123) theano_rng = RandomStreams(rng.randint(2 ** 30)) da = dA( numpy_rng=rng, theano_rng=theano_rng, input=x, n_visible=128 * 128, n_hidden=500 ) cost, updates = da.get_cost_updates( corruption_level=0., learning_rate=learning_rate ) train_da = theano.function( [index], cost, updates=updates, givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size] } ) start_time = timeit.default_timer() ############ # TRAINING # ############ # go through training epochs for epoch in xrange(training_epochs): # go through trainng set c = [] for batch_index in xrange(n_train_batches): c.append(train_da(batch_index)) print 'Training epoch %d, cost ' % epoch, numpy.mean(c) end_time = timeit.default_timer() training_time = (end_time - start_time) print >> sys.stderr, ('The no corruption code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((training_time) / 60.)) # image = Image.fromarray( # tile_raster_images(X=da.W.get_value(borrow=True).T, # img_shape=(128, 128), tile_shape=(10, 10), # tile_spacing=(1, 1))) # image.save('filters_corruption_0.png') # print train_set_x.get_value(borrow=True).shape # sample = train_set_x.get_value(borrow=True)[0] # print sample.shape # print da.get_hidden_values(sample) # W = da.W.get_value(borrow=True).T # print da.W.get_value(borrow=True).T.shape # print da.W.get_value(borrow=True).T[0].shape #sample = T.ivector('sample') #sample = T.matrix('sample') index_1 = T.lscalar() # index to a [mini]batch index_2 = T.lscalar() # index to a [mini]batch getHV = da.get_hidden_values(x) getHiddenValues = theano.function( [index_1,index_2], getHV, givens={ x: train_set_x[index_1:index_2] } ) #print getHiddenValues(0,1).shape import cPickle from fetex_image import FetexImage pkl_file = open('/Applications/MAMP/htdocs/DeepLearningTutorials/data/im_index.pkl', 'rb') im_index = cPickle.load(pkl_file) data_path = '/Applications/MAMP/htdocs/DeepLearningTutorials/data/' #store = pd.HDFStore('/Applications/MAMP/htdocs/DeepLearningTutorials/data/df_images.h5', 'r') fe = FetexImage(verbose=True,support_per_class=100,data_path=data_path, dataset='categories', mode='RGB') fe.im_index = im_index # print im_index[0] # print im_index[1] X_compressed = getHiddenValues(0,100) print X_compressed.shape fe.similarImages(X_compressed,pca=False) # print getHiddenValues(0,1).shape # print sum(X_compressed[0]) # print sum(getHiddenValues(1,2)[0]) #print sum(getHiddenValues(100,101)[0]) # start-snippet-3 ##################################### # BUILDING THE MODEL CORRUPTION 30% # ##################################### # rng = numpy.random.RandomState(123) # theano_rng = RandomStreams(rng.randint(2 ** 30)) # da = dA( # numpy_rng=rng, # theano_rng=theano_rng, # input=x, # n_visible=128 * 128, # n_hidden=500 # ) # cost, updates = da.get_cost_updates( # corruption_level=0.3, # learning_rate=learning_rate # ) # train_da = theano.function( # [index], # cost, # updates=updates, # givens={ # x: train_set_x[index * batch_size: (index + 1) * batch_size] # } # ) # start_time = timeit.default_timer() # ############ # # TRAINING # # ############ # # go through training epochs # for epoch in xrange(training_epochs): # # go through trainng set # c = [] # for batch_index in xrange(n_train_batches): # c.append(train_da(batch_index)) # print 'Training epoch %d, cost ' % epoch, numpy.mean(c) # end_time = timeit.default_timer() # training_time = (end_time - start_time) # print >> sys.stderr, ('The 30% corruption code for file ' + # os.path.split(__file__)[1] + # ' ran for %.2fm' % (training_time / 60.)) # # end-snippet-3 # # start-snippet-4 # image = Image.fromarray(tile_raster_images( # X=da.W.get_value(borrow=True).T, # img_shape=(128, 128), tile_shape=(10, 10), # tile_spacing=(1, 1))) # image.save('filters_corruption_30.png') # # end-snippet-4 # print da.W.get_value(borrow=True).T os.chdir('../')