def eval_ensemble():
    sent_file = config.PRO_ROOT / "data/p_fever/fever_sentence_level/04-24-00-11-19_fever_v0_slevel_retri_(ignore_non_verifiable-True)/fever_s_level_dev_results.jsonl"
    dev_sent_filtering_prob = 0.01
    tag = 'dev'
    top_k = 5

    # dev_list = common.load_jsonl(config.FEVER_DEV)
    dev_sent_results_list = common.load_jsonl(sent_file)

    dev_fitems, dev_list = get_nli_pair(
        tag,
        is_training=False,
        sent_level_results_list=dev_sent_results_list,
        debug=False,
        sent_top_k=top_k,
        sent_filter_value=dev_sent_filtering_prob)

    pred_file_list = [
        config.PRO_ROOT /
        "data/p_fever/fever_nli/04-25-22:02:53_fever_v2_nli_th0.2/ema_i(20000)|e(3)|ss(0.7002700270027002)|ac(0.746024602460246)|pr(0.6141389138913633)|rec(0.8627362736273627)|f1(0.7175148212089147)|seed(12)/nli_dev_label_results_th0.2.jsonl",
        config.PRO_ROOT /
        "data/p_fever/fever_nli/04-26-10:15:39_fever_v2_nli_th0.2/ema_i(14000)|e(2)|ss(0.6991199119911992)|ac(0.7492249224922493)|pr(0.7129412941294097)|rec(0.8338583858385838)|f1(0.7686736484619933)|seed(12)/nli_dev_label_results_th0.2.jsonl",
        config.PRO_ROOT /
        "data/p_fever/fever_nli/04-27-10:03:27_fever_v2_nli_th0.2/ema_i(26000)|e(3)|ss(0.6958695869586958)|ac(0.7447744774477447)|pr(0.7129412941294097)|rec(0.8338583858385838)|f1(0.7686736484619933)|seed(12)/nli_dev_label_results_th0.2.jsonl",
    ]
    pred_d_list = [common.load_jsonl(file) for file in pred_file_list]
    final_list = ensemble_nli_results(pred_d_list)
    pred_list = final_list

    ema_results_dict = list_dict_data_tool.list_to_dict(pred_list, 'oid')
    copied_dev_list = copy.deepcopy(dev_list)
    list_dict_data_tool.append_item_from_dict_to_list(copied_dev_list,
                                                      ema_results_dict, 'id',
                                                      'predicted_label')

    dev_list = common.load_jsonl(config.FEVER_DEV)
    mode = {'standard': True}
    strict_score, acc_score, pr, rec, f1 = fever_scorer.fever_score(
        copied_dev_list, dev_list, mode=mode, max_evidence=5)
    logging_item = {
        'ss': strict_score,
        'ac': acc_score,
        'pr': pr,
        'rec': rec,
        'f1': f1,
    }

    print(logging_item)
def evidence_adjustment(tag, sent_file, label_file, filter_prob=0.2, top_k=5):
    dev_sent_filtering_prob = filter_prob

    # dev_list = common.load_jsonl(config.FEVER_DEV)
    dev_sent_results_list = common.load_jsonl(sent_file)

    dev_fitems, dev_list = get_nli_pair(
        tag,
        is_training=False,
        sent_level_results_list=dev_sent_results_list,
        debug=False,
        sent_top_k=top_k,
        sent_filter_value=dev_sent_filtering_prob)

    cur_eval_results_list = common.load_jsonl(label_file)

    ema_results_dict = list_dict_data_tool.list_to_dict(
        cur_eval_results_list, 'oid')
    copied_dev_list = copy.deepcopy(dev_list)
    list_dict_data_tool.append_item_from_dict_to_list(copied_dev_list,
                                                      ema_results_dict, 'id',
                                                      'predicted_label')

    mode = {'standard': True}
    # delete_unused_evidence(copied_dev_list)
    strict_score, acc_score, pr, rec, f1 = fever_scorer.fever_score(
        copied_dev_list, dev_list, mode=mode, max_evidence=5)
    logging_item = {
        'ss': strict_score,
        'ac': acc_score,
        'pr': pr,
        'rec': rec,
        'f1': f1,
    }

    print(logging_item)
示例#3
0
def model_eval_ablation(model_path, filter_value=0.2, top_k_sent=5):
    bert_model_name = 'bert-base-uncased'
    bert_pretrain_path = config.PRO_ROOT / '.pytorch_pretrained_bert'

    lazy = False
    forward_size = 32
    do_lower_case = True
    pair_order = 'cq'
    debug_mode = False

    maxout_model = False

    num_class = 3

    tag = 'dev'
    exp = 'no_re_train'
    print("Filter value:", filter_value)
    print("top_k_sent:", top_k_sent)
    train_sent_filtering_prob = 0.2
    dev_sent_filtering_prob = filter_value
    test_sent_filtering_prob = 0.2

    # Data dataset and upstream sentence results.
    dev_sent_results_list = common.load_jsonl(
        config.PRO_ROOT / "data/p_fever/fever_sentence_level/04-24-00-11-19_fever_v0_slevel_retri_(ignore_non_verifiable-True)/fever_s_level_dev_results.jsonl")
    # train_sent_results_list = common.load_jsonl(
    #     config.PRO_ROOT / "data/p_fever/fever_sentence_level/04-24-00-11-19_fever_v0_slevel_retri_(ignore_non_verifiable-True)/fever_s_level_train_results.jsonl")
    test_sent_results_list = common.load_jsonl(
        config.PRO_ROOT / "data/p_fever/fever_sentence_level/04-24-00-11-19_fever_v0_slevel_retri_(ignore_non_verifiable-True)/fever_s_level_test_results.jsonl")

    dev_fitems, dev_list = get_nli_pair('dev', is_training=False,
                                        sent_level_results_list=dev_sent_results_list, debug=debug_mode,
                                        sent_top_k=top_k_sent, sent_filter_value=dev_sent_filtering_prob)
    # train_fitems, train_list = get_nli_pair('train', is_training=True,
    #                                         sent_level_results_list=train_sent_results_list, debug=debug_mode,
    #                                         sent_top_k=5, sent_filter_value=train_sent_filtering_prob)
    test_fitems, test_list = get_nli_pair('test', is_training=False,
                                          sent_level_results_list=test_sent_results_list, debug=debug_mode,
                                          sent_top_k=top_k_sent, sent_filter_value=test_sent_filtering_prob)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    device_num = 0 if torch.cuda.is_available() else -1

    n_gpu = torch.cuda.device_count()

    unk_token_num = {'tokens': 1}  # work around for initiating vocabulary.
    vocab = ExVocabulary(unk_token_num=unk_token_num)
    vocab.add_token_to_namespace('SUPPORTS', namespace='labels')
    vocab.add_token_to_namespace('REFUTES', namespace='labels')
    vocab.add_token_to_namespace('NOT ENOUGH INFO', namespace='labels')
    vocab.add_token_to_namespace("hidden", namespace="labels")
    vocab.change_token_with_index_to_namespace("hidden", -2, namespace='labels')

    if debug_mode:
        dev_list = dev_list[:100]
        # train_list = train_list[:100]
        test_list = test_list[:100]
        eval_frequency = 2

    # est_datasize = len(train_fitems)

    bert_tokenizer = BertTokenizer.from_pretrained(bert_model_name, do_lower_case=do_lower_case,
                                                   cache_dir=bert_pretrain_path)
    bert_cs_reader = BertFeverNLIReader(bert_tokenizer, lazy, is_paired=True, query_l=64,
                                        example_filter=None, max_l=384, pair_order=pair_order)

    bert_encoder = BertModel.from_pretrained(bert_model_name, cache_dir=bert_pretrain_path)
    if not maxout_model:
        model = BertMultiLayerSeqClassification(bert_encoder, num_labels=num_class, num_of_pooling_layer=1,
                                                act_type='tanh', use_pretrained_pooler=True, use_sigmoid=False)
    else:
        model = BertPairMaxOutMatcher(bert_encoder, num_of_class=num_class, act_type="gelu", num_of_out_layers=2)

    model.load_state_dict(torch.load(model_path))

    dev_instances = bert_cs_reader.read(dev_fitems)
    # train_instances = bert_cs_reader.read(train_fitems)
    test_instances = bert_cs_reader.read(test_fitems)

    biterator = BasicIterator(batch_size=forward_size)
    biterator.index_with(vocab)

    model.to(device)
    if n_gpu > 1:
        model = torch.nn.DataParallel(model)

    if tag == 'dev':
        dev_iter = biterator(dev_instances, num_epochs=1, shuffle=False)

        cur_eval_results_list = eval_model(model, dev_iter, device_num, with_probs=True, make_int=True,
                                           feed_input_span=maxout_model, show_progress=True)
        common.save_jsonl(cur_eval_results_list, f"nli_{tag}_label_results_th{dev_sent_filtering_prob}_{exp}.jsonl")

        ema_results_dict = list_dict_data_tool.list_to_dict(cur_eval_results_list, 'oid')
        copied_dev_list = copy.deepcopy(dev_list)
        list_dict_data_tool.append_item_from_dict_to_list(copied_dev_list, ema_results_dict,
                                                          'id', 'predicted_label')

        common.save_jsonl(copied_dev_list, f"nli_{tag}_cp_results_th{dev_sent_filtering_prob}_{exp}.jsonl")
        mode = {'standard': True}
        strict_score, acc_score, pr, rec, f1 = fever_scorer.fever_score(copied_dev_list, dev_list,
                                                                        mode=mode, max_evidence=5)
        logging_item = {
            'ss': strict_score, 'ac': acc_score,
            'pr': pr, 'rec': rec, 'f1': f1,
        }

        print(logging_item)
        common.save_json(logging_item,
                         f"nli_th{dev_sent_filtering_prob}_{exp}_ss:{strict_score}_ac:{acc_score}_pr:{pr}_rec:{rec}_f1:{f1}.jsonl")

    elif tag == 'test':
        test_iter = biterator(test_instances, num_epochs=1, shuffle=False)

        cur_eval_results_list = eval_model(model, test_iter, device_num, with_probs=True, make_int=True,
                                           feed_input_span=maxout_model, show_progress=True)

        common.save_jsonl(cur_eval_results_list, f"nli_{tag}_label_results_th{test_sent_filtering_prob}.jsonl")

        ema_results_dict = list_dict_data_tool.list_to_dict(cur_eval_results_list, 'oid')
        copied_test_list = copy.deepcopy(test_list)
        list_dict_data_tool.append_item_from_dict_to_list(copied_test_list, ema_results_dict,
                                                          'id', 'predicted_label')

        common.save_jsonl(copied_test_list, f"nli_{tag}_cp_results_th{test_sent_filtering_prob}.jsonl")
示例#4
0
def model_go(th_filter_prob=0.2, top_k_sent=5):
    seed = 12
    torch.manual_seed(seed)
    # bert_model_name = 'bert-large-uncased'
    bert_model_name = 'bert-base-uncased'
    bert_pretrain_path = config.PRO_ROOT / '.pytorch_pretrained_bert'
    lazy = False
    # lazy = True
    forward_size = 32
    # batch_size = 64
    # batch_size = 192
    batch_size = 32
    gradient_accumulate_step = int(batch_size / forward_size)
    warmup_proportion = 0.1
    # schedule_type = 'warmup_constant'
    # 'warmup_cosine': warmup_cosine,
    # 'warmup_constant': warmup_constant,
    # 'warmup_linear': warmup_linear,
    schedule_type = 'warmup_linear'
    learning_rate = 5e-5
    num_train_epochs = 5
    eval_frequency = 4000
    do_lower_case = True
    pair_order = 'cq'
    # debug_mode = True
    # debug_mode = True
    debug_mode = False
    do_ema = True

    maxout_model = False
    # est_datasize = 900_000

    num_class = 3
    # num_train_optimization_steps
    top_k = top_k_sent

    train_sent_filtering_prob = th_filter_prob
    dev_sent_filtering_prob = th_filter_prob
    experiment_name = f'fever_v2_nli_th{train_sent_filtering_prob}_tk{top_k}'

    # Data dataset and upstream sentence results.
    dev_sent_results_list = common.load_jsonl(
        config.PRO_ROOT / "data/p_fever/fever_sentence_level/04-24-00-11-19_fever_v0_slevel_retri_(ignore_non_verifiable-True)/fever_s_level_dev_results.jsonl")
    train_sent_results_list = common.load_jsonl(
        config.PRO_ROOT / "data/p_fever/fever_sentence_level/04-24-00-11-19_fever_v0_slevel_retri_(ignore_non_verifiable-True)/fever_s_level_train_results.jsonl")

    dev_fitems, dev_list = get_nli_pair('dev', is_training=False,
                                        sent_level_results_list=dev_sent_results_list, debug=debug_mode,
                                        sent_top_k=top_k_sent, sent_filter_value=dev_sent_filtering_prob)
    train_fitems, train_list = get_nli_pair('train', is_training=True,
                                            sent_level_results_list=train_sent_results_list, debug=debug_mode,
                                            sent_top_k=top_k_sent, sent_filter_value=train_sent_filtering_prob)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    device_num = 0 if torch.cuda.is_available() else -1

    n_gpu = torch.cuda.device_count()

    unk_token_num = {'tokens': 1}  # work around for initiating vocabulary.
    vocab = ExVocabulary(unk_token_num=unk_token_num)
    vocab.add_token_to_namespace('SUPPORTS', namespace='labels')
    vocab.add_token_to_namespace('REFUTES', namespace='labels')
    vocab.add_token_to_namespace('NOT ENOUGH INFO', namespace='labels')
    vocab.add_token_to_namespace("hidden", namespace="labels")
    vocab.change_token_with_index_to_namespace("hidden", -2, namespace='labels')

    if debug_mode:
        dev_list = dev_list[:100]
        train_list = train_list[:100]
        eval_frequency = 2

    est_datasize = len(train_fitems)

    bert_tokenizer = BertTokenizer.from_pretrained(bert_model_name, do_lower_case=do_lower_case,
                                                   cache_dir=bert_pretrain_path)
    bert_cs_reader = BertFeverNLIReader(bert_tokenizer, lazy, is_paired=True, query_l=64,
                                        example_filter=None, max_l=384, pair_order=pair_order)

    bert_encoder = BertModel.from_pretrained(bert_model_name, cache_dir=bert_pretrain_path)
    if not maxout_model:
        model = BertMultiLayerSeqClassification(bert_encoder, num_labels=num_class, num_of_pooling_layer=1,
                                                act_type='tanh', use_pretrained_pooler=True, use_sigmoid=False)
    else:
        model = BertPairMaxOutMatcher(bert_encoder, num_of_class=num_class, act_type="gelu", num_of_out_layers=2)

    ema = None
    if do_ema:
        ema = EMA(model, model.named_parameters(), device_num=1)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]

    num_train_optimization_steps = int(est_datasize / forward_size / gradient_accumulate_step) * \
                                   num_train_epochs

    if debug_mode:
        num_train_optimization_steps = 100

    print("Estimated training size", est_datasize)
    print("Number of optimization steps:", num_train_optimization_steps)
    print("Do EMA:", do_ema)

    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=learning_rate,
                         warmup=warmup_proportion,
                         t_total=num_train_optimization_steps,
                         schedule=schedule_type)

    dev_instances = bert_cs_reader.read(dev_fitems)

    biterator = BasicIterator(batch_size=forward_size)
    biterator.index_with(vocab)

    model.to(device)
    if n_gpu > 1:
        model = torch.nn.DataParallel(model)

    forbackward_step = 0
    update_step = 0

    logging_agent = save_tool.ScoreLogger({})

    file_path_prefix = '.'
    if not debug_mode:
        file_path_prefix, date = save_tool.gen_file_prefix(f"{experiment_name}")
        # # # Create Log File
        # Save the source code.
        script_name = os.path.basename(__file__)
        with open(os.path.join(file_path_prefix, script_name), 'w') as out_f, open(__file__, 'r') as it:
            out_f.write(it.read())
            out_f.flush()
        # # # Log File end

    for epoch_i in range(num_train_epochs):
        print("Epoch:", epoch_i)

        train_fitems_list, _ = get_nli_pair('train', is_training=True,
                                            sent_level_results_list=train_sent_results_list, debug=debug_mode,
                                            sent_top_k=5, sent_filter_value=train_sent_filtering_prob)

        random.shuffle(train_fitems_list)
        train_instance = bert_cs_reader.read(train_fitems_list)
        train_iter = biterator(train_instance, num_epochs=1, shuffle=True)

        for batch in tqdm(train_iter):
            model.train()
            batch = move_to_device(batch, device_num)

            paired_sequence = batch['paired_sequence']
            paired_segments_ids = batch['paired_segments_ids']
            labels_ids = batch['label']
            att_mask, _ = torch_util.get_length_and_mask(paired_sequence)
            s1_span = batch['bert_s1_span']
            s2_span = batch['bert_s2_span']

            if not maxout_model:
                loss = model(paired_sequence, token_type_ids=paired_segments_ids, attention_mask=att_mask,
                             mode=BertMultiLayerSeqClassification.ForwardMode.TRAIN,
                             labels=labels_ids)
            else:
                loss = model(paired_sequence, token_type_ids=paired_segments_ids, attention_mask=att_mask,
                             s1_span=s1_span, s2_span=s2_span,
                             mode=BertPairMaxOutMatcher.ForwardMode.TRAIN,
                             labels=labels_ids)

            if n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu.

            if gradient_accumulate_step > 1:
                loss = loss / gradient_accumulate_step

            loss.backward()
            forbackward_step += 1

            if forbackward_step % gradient_accumulate_step == 0:
                optimizer.step()
                if ema is not None and do_ema:
                    updated_model = model.module if hasattr(model, 'module') else model
                    ema(updated_model.named_parameters())
                optimizer.zero_grad()
                update_step += 1

                if update_step % eval_frequency == 0:
                    print("Update steps:", update_step)
                    # dev_iter = biterator(dev_instances, num_epochs=1, shuffle=False)
                    #
                    # cur_eval_results_list = eval_model(model, dev_iter, device_num, with_probs=True, make_int=True,
                    #                                    feed_input_span=maxout_model)
                    #
                    # ema_results_dict = list_dict_data_tool.list_to_dict(cur_eval_results_list, 'oid')
                    # copied_dev_list = copy.deepcopy(dev_list)
                    # list_dict_data_tool.append_item_from_dict_to_list(copied_dev_list, ema_results_dict,
                    #                                                   'id', 'predicted_label')
                    #
                    # mode = {'standard': True}
                    # strict_score, acc_score, pr, rec, f1 = fever_scorer.fever_score(copied_dev_list, dev_list,
                    #                                                                 mode=mode, max_evidence=5)
                    # logging_item = {
                    #     'ss': strict_score, 'ac': acc_score,
                    #     'pr': pr, 'rec': rec, 'f1': f1,
                    # }
                    #
                    # if not debug_mode:
                    #     save_file_name = f'i({update_step})|e({epoch_i})' \
                    #         f'|ss({strict_score})|ac({acc_score})|pr({pr})|rec({rec})|f1({f1})' \
                    #         f'|seed({seed})'
                    #
                    #     common.save_jsonl(copied_dev_list, Path(file_path_prefix) /
                    #                       f"{save_file_name}_dev_nli_results.json")
                    #
                    #     # print(save_file_name)
                    #     logging_agent.incorporate_results({}, save_file_name, logging_item)
                    #     logging_agent.logging_to_file(Path(file_path_prefix) / "log.json")
                    #
                    #     model_to_save = model.module if hasattr(model, 'module') else model
                    #     output_model_file = Path(file_path_prefix) / save_file_name
                    #     torch.save(model_to_save.state_dict(), str(output_model_file))

                    if do_ema and ema is not None:
                        ema_model = ema.get_inference_model()
                        ema_device_num = 0
                        ema_model = ema_model.to(device)
                        ema_model = torch.nn.DataParallel(ema_model)
                        dev_iter = biterator(dev_instances, num_epochs=1, shuffle=False)
                        cur_ema_eval_results_list = eval_model(ema_model, dev_iter, ema_device_num, with_probs=True,
                                                               make_int=True,
                                                               feed_input_span=maxout_model)

                        ema_results_dict = list_dict_data_tool.list_to_dict(cur_ema_eval_results_list, 'oid')
                        copied_dev_list = copy.deepcopy(dev_list)
                        list_dict_data_tool.append_item_from_dict_to_list(copied_dev_list, ema_results_dict,
                                                                          'id', 'predicted_label')

                        mode = {'standard': True}
                        strict_score, acc_score, pr, rec, f1 = fever_scorer.fever_score(copied_dev_list, dev_list,
                                                                                        mode=mode, max_evidence=5)
                        ema_logging_item = {
                            'label': 'ema',
                            'ss': strict_score, 'ac': acc_score,
                            'pr': pr, 'rec': rec, 'f1': f1,
                        }

                        if not debug_mode:
                            save_file_name = f'ema_i({update_step})|e({epoch_i})' \
                                f'|ss({strict_score})|ac({acc_score})|pr({pr})|rec({rec})|f1({f1})' \
                                f'|seed({seed})'

                            common.save_jsonl(copied_dev_list, Path(file_path_prefix) /
                                              f"{save_file_name}_dev_nli_results.json")

                            # print(save_file_name)
                            logging_agent.incorporate_results({}, save_file_name, ema_logging_item)
                            logging_agent.logging_to_file(Path(file_path_prefix) / "log.json")

                            model_to_save = ema_model.module if hasattr(ema_model, 'module') else ema_model
                            output_model_file = Path(file_path_prefix) / save_file_name
                            torch.save(model_to_save.state_dict(), str(output_model_file))