def _compute_expression_ir(expression, index, prefix, analysis, parameters, visualise): logger.info("Computing IR for expression {}".format(index)) # Compute representation ir = {} original_expression = (expression[2], expression[1]) sig = naming.compute_signature([original_expression], "", parameters) ir["name"] = "expression_{!s}".format(sig) original_expression = expression[2] points = expression[1] expression = expression[0] try: cell = expression.ufl_domain().ufl_cell() except AttributeError: # This case corresponds to a spatially constant expression without any dependencies cell = None # Prepare dimensions of all unique element in expression, including # elements for arguments, coefficients and coordinate mappings ir["element_dimensions"] = { ufl_element: create_element(ufl_element).space_dimension() for ufl_element in analysis.unique_elements } # Extract dimensions for elements of arguments only arguments = ufl.algorithms.extract_arguments(expression) argument_elements = tuple(f.ufl_element() for f in arguments) argument_dimensions = [ ir["element_dimensions"][ufl_element] for ufl_element in argument_elements ] tensor_shape = argument_dimensions ir["tensor_shape"] = tensor_shape ir["expression_shape"] = list(expression.ufl_shape) coefficients = ufl.algorithms.extract_coefficients(expression) coefficient_numbering = {} for i, coeff in enumerate(coefficients): coefficient_numbering[coeff] = i # Add coefficient numbering to IR ir["coefficient_numbering"] = coefficient_numbering original_coefficient_positions = [] original_coefficients = ufl.algorithms.extract_coefficients( original_expression) for coeff in coefficients: original_coefficient_positions.append( original_coefficients.index(coeff)) ir["original_coefficient_positions"] = original_coefficient_positions coefficient_elements = tuple(f.ufl_element() for f in coefficients) offsets = {} _offset = 0 for i, el in enumerate(coefficient_elements): offsets[coefficients[i]] = _offset _offset += ir["element_dimensions"][el] # Copy offsets also into IR ir["coefficient_offsets"] = offsets ir["integral_type"] = "expression" ir["entitytype"] = "cell" # Build offsets for Constants original_constant_offsets = {} _offset = 0 for constant in ufl.algorithms.analysis.extract_constants(expression): original_constant_offsets[constant] = _offset _offset += numpy.product(constant.ufl_shape, dtype=numpy.int) ir["original_constant_offsets"] = original_constant_offsets ir["points"] = points weights = numpy.array([1.0] * points.shape[0]) rule = QuadratureRule(points, weights) integrands = {rule: expression} if cell is None: assert len(ir["original_coefficient_positions"]) == 0 and len( ir["original_constant_offsets"]) == 0 expression_ir = compute_integral_ir(cell, ir["integral_type"], ir["entitytype"], integrands, tensor_shape, parameters, visualise) ir.update(expression_ir) return ir_expression(**ir)
def _compute_integral_ir(form_data, form_index, prefix, element_numbers, integral_names, parameters, visualise): """Compute intermediate represention for form integrals.""" _entity_types = { "cell": "cell", "exterior_facet": "facet", "interior_facet": "facet", "vertex": "vertex", "custom": "cell" } # Iterate over groups of integrals irs = [] for itg_data_index, itg_data in enumerate(form_data.integral_data): logger.info("Computing IR for integral in integral group {}".format( itg_data_index)) # Compute representation entitytype = _entity_types[itg_data.integral_type] cell = itg_data.domain.ufl_cell() cellname = cell.cellname() tdim = cell.topological_dimension() assert all(tdim == itg.ufl_domain().topological_dimension() for itg in itg_data.integrals) ir = { "integral_type": itg_data.integral_type, "subdomain_id": itg_data.subdomain_id, "rank": form_data.rank, "geometric_dimension": form_data.geometric_dimension, "topological_dimension": tdim, "entitytype": entitytype, "num_facets": cell.num_facets(), "num_vertices": cell.num_vertices(), "needs_oriented": form_needs_oriented_jacobian(form_data), "enabled_coefficients": itg_data.enabled_coefficients, "cell_shape": cellname } # Get element space dimensions unique_elements = element_numbers.keys() ir["element_dimensions"] = { ufl_element: create_element(ufl_element).space_dimension() for ufl_element in unique_elements } ir["element_ids"] = { ufl_element: i for i, ufl_element in enumerate(unique_elements) } # Create dimensions of primary indices, needed to reset the argument # 'A' given to tabulate_tensor() by the assembler. argument_dimensions = [ ir["element_dimensions"][ufl_element] for ufl_element in form_data.argument_elements ] # Compute shape of element tensor if ir["integral_type"] == "interior_facet": ir["tensor_shape"] = [2 * dim for dim in argument_dimensions] else: ir["tensor_shape"] = argument_dimensions integral_type = itg_data.integral_type cell = itg_data.domain.ufl_cell() # Group integrands with the same quadrature rule grouped_integrands = {} for integral in itg_data.integrals: md = integral.metadata() or {} scheme = md["quadrature_rule"] degree = md["quadrature_degree"] if scheme == "custom": points = md["quadrature_points"] weights = md["quadrature_weights"] elif scheme == "vertex": # FIXME: Could this come from FIAT? # # The vertex scheme, i.e., averaging the function value in the # vertices and multiplying with the simplex volume, is only of # order 1 and inferior to other generic schemes in terms of # error reduction. Equation systems generated with the vertex # scheme have some properties that other schemes lack, e.g., the # mass matrix is a simple diagonal matrix. This may be # prescribed in certain cases. if degree > 1: warnings.warn( "Explicitly selected vertex quadrature (degree 1), but requested degree is {}." .format(degree)) if cellname == "tetrahedron": points, weights = (numpy.array([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]), numpy.array([ 1.0 / 24.0, 1.0 / 24.0, 1.0 / 24.0, 1.0 / 24.0 ])) elif cellname == "triangle": points, weights = (numpy.array([[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]]), numpy.array( [1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0])) elif cellname == "interval": # Trapezoidal rule return (numpy.array([[0.0], [1.0]]), numpy.array([1.0 / 2.0, 1.0 / 2.0])) else: (points, weights) = create_quadrature_points_and_weights( integral_type, cell, degree, scheme) points = numpy.asarray(points) weights = numpy.asarray(weights) rule = QuadratureRule(points, weights) if rule not in grouped_integrands: grouped_integrands[rule] = [] grouped_integrands[rule].append(integral.integrand()) sorted_integrals = {} for rule, integrands in grouped_integrands.items(): integrands_summed = sorted_expr_sum(integrands) integral_new = Integral(integrands_summed, itg_data.integral_type, itg_data.domain, itg_data.subdomain_id, {}, None) sorted_integrals[rule] = integral_new # TODO: See if coefficient_numbering can be removed # Build coefficient numbering for UFC interface here, to avoid # renumbering in UFL and application of replace mapping coefficient_numbering = {} for i, f in enumerate(form_data.reduced_coefficients): coefficient_numbering[f] = i # Add coefficient numbering to IR ir["coefficient_numbering"] = coefficient_numbering index_to_coeff = sorted([(v, k) for k, v in coefficient_numbering.items()]) offsets = {} width = 2 if integral_type in ("interior_facet") else 1 _offset = 0 for k, el in zip(index_to_coeff, form_data.coefficient_elements): offsets[k[1]] = _offset _offset += width * ir["element_dimensions"][el] # Copy offsets also into IR ir["coefficient_offsets"] = offsets # Build offsets for Constants original_constant_offsets = {} _offset = 0 for constant in form_data.original_form.constants(): original_constant_offsets[constant] = _offset _offset += numpy.product(constant.ufl_shape, dtype=numpy.int) ir["original_constant_offsets"] = original_constant_offsets ir["precision"] = itg_data.metadata["precision"] # Create map from number of quadrature points -> integrand integrands = { rule: integral.integrand() for rule, integral in sorted_integrals.items() } # Build more specific intermediate representation integral_ir = compute_integral_ir(itg_data.domain.ufl_cell(), itg_data.integral_type, ir["entitytype"], integrands, ir["tensor_shape"], parameters, visualise) ir.update(integral_ir) # Fetch name ir["name"] = integral_names[(form_index, itg_data_index)] irs.append(ir_integral(**ir)) return irs