示例#1
0
def excite_system(mesh, beta=0.0):

    # Specify the stt dynamics in the simulation
    sim = Sim(mesh, name='dyn_%g'%beta, driver='llg_stt_cpp')

    sim.driver.set_tols(rtol=1e-12, atol=1e-12)
    sim.driver.alpha = 0.1
    sim.driver.gamma = 2.211e5
    sim.Ms = 8.6e5

    # sim.set_m(init_m)
    sim.set_m(np.load('m0.npy'))

    # Energies
    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    anis = UniaxialAnisotropy(5e4)
    sim.add(anis)

    # beta is the parameter in the STT torque
    sim.a_J = global_const*1e11
    sim.p = (1,0,0)
    sim.beta = beta

    # The simulation will run for 5 ns and save
    # 500 snapshots of the system in the process
    ts = np.linspace(0, 0.5e-9, 21)

    xs=[]
    thetas=[]

    for t in ts:
        print('time', t)
        sim.run_until(t)
        spin = sim.spin.copy()
        x, theta = extract_dw(spin)
        xs.append(x)
        thetas.append(theta)
        sim.save_vtk()

    np.savetxt('dw_%g.txt'%beta,np.transpose(np.array([ts, xs,thetas])))
示例#2
0
def excite_system(mesh, beta=0.0):

    # Specify the stt dynamics in the simulation
    sim = Sim(mesh, name='dyn_%g' % beta, driver='llg_stt_cpp')

    sim.driver.set_tols(rtol=1e-12, atol=1e-12)
    sim.driver.alpha = 0.1
    sim.driver.gamma = 2.211e5
    sim.Ms = 8.6e5

    # sim.set_m(init_m)
    sim.set_m(np.load('m0.npy'))

    # Energies
    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    anis = UniaxialAnisotropy(5e4)
    sim.add(anis)

    # beta is the parameter in the STT torque
    sim.a_J = global_const * 1e11
    sim.p = (1, 0, 0)
    sim.beta = beta

    # The simulation will run for 5 ns and save
    # 500 snapshots of the system in the process
    ts = np.linspace(0, 0.5e-9, 21)

    xs = []
    thetas = []

    for t in ts:
        print('time', t)
        sim.run_until(t)
        spin = sim.spin.copy()
        x, theta = extract_dw(spin)
        xs.append(x)
        thetas.append(theta)
        sim.save_vtk()

    np.savetxt('dw_%g.txt' % beta, np.transpose(np.array([ts, xs, thetas])))
示例#3
0
def excite_system(mesh):

    # Specify the stt dynamics in the simulation
    sim = Sim(mesh, name='dyn2', driver='llg_stt')
    sim.driver.set_tols(rtol=1e-12, atol=1e-14)
    sim.driver.alpha = 0.2
    sim.driver.gamma = 2.211e5
    sim.Ms = 8.6e5

    # sim.set_m(init_m)
    sim.set_m(np.load('m0.npy'))

    # Energies
    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    anis = UniaxialAnisotropy(5e4)
    sim.add(anis)

    # dmi = DMI(D=8e-4)
    # sim.add(dmi)

    # Set the current in the x direction, in A / m
    # beta is the parameter in the STT torque
    def jx_func(pos, t):
        T = 1e-9
        return (-1e12 + -0.1e12 * np.sin(t / T))

    sim.driver.jx_function = jx_func
    sim.driver.beta = 0.01

    # The simulation will run for 5 ns and save
    # 500 snapshots of the system in the process
    ts = np.linspace(0, 10e-9, 1001)

    for t in ts:
        print('time', t)
        sim.driver.run_until(t)
        print('j = {}'.format(sim.driver._jx[0]))
        sim.save_vtk()
        sim.save_m()
示例#4
0
def excite_system(mesh, time=5, snaps=501):

    # Specify the stt dynamics in the simulation
    sim = Sim(mesh, name='dyn', driver='llg_stt')

    # Set the simulation parameters
    sim.set_tols(rtol=1e-12, atol=1e-14)
    sim.alpha = 0.05
    sim.gamma = 2.211e5
    sim.Ms = 8.6e5

    # Load the initial state from the npy file saved
    # in the realxation
    sim.set_m(np.load('m0.npy'))

    # Add the energies
    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    anis = UniaxialAnisotropy(5e4)
    sim.add(anis)

    # dmi = DMI(D=8e-4)
    # sim.add(dmi)

    # Set the current in the x direction, in A / m
    # beta is the parameter in the STT torque
    sim.jx = -1e12
    sim.beta = 1

    # The simulation will run for x ns and save
    # 'snaps' snapshots of the system in the process
    ts = np.linspace(0, time * 1e-9, snaps)

    for t in ts:
        print 'time', t
        sim.run_until(t)
        sim.save_vtk()
        sim.save_m()
def excite_system(mesh, time=5, snaps=501):

    # Specify the stt dynamics in the simulation
    sim = Sim(mesh, name='dyn', driver='llg_stt')

    # Set the simulation parameters
    sim.driver.set_tols(rtol=1e-12, atol=1e-14)
    sim.driver.alpha = 0.05
    sim.gamma = 2.211e5
    sim.Ms = 8.6e5

    # Load the initial state from the npy file saved
    # in the realxation
    sim.set_m(np.load('m0.npy'))

    # Add the energies
    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    anis = UniaxialAnisotropy(5e4)
    sim.add(anis)

    # dmi = DMI(D=8e-4)
    # sim.add(dmi)

    # Set the current in the x direction, in A / m
    # beta is the parameter in the STT torque
    sim.driver.jx = -1e12
    sim.driver.beta = 1

    # The simulation will run for x ns and save
    # 'snaps' snapshots of the system in the process
    ts = np.linspace(0, time * 1e-9, snaps)

    for t in ts:
        print('time', t)
        sim.driver.run_until(t)
        sim.save_vtk()
        sim.save_m()
示例#6
0
def excite_system(mesh):

    sim = Sim(mesh, name='dyn')

    sim.driver.set_tols(rtol=1e-10, atol=1e-14)
    sim.driver.alpha = 0.01
    sim.driver.gamma = 2.211e5
    sim.Ms = spatial_Ms

    # sim.set_m(init_m)
    sim.set_m(np.load('m0.npy'))

    A = 1.3e-11
    exch = UniformExchange(A=A)
    sim.add(exch)

    demag = Demag(pbc_2d=True)
    sim.add(demag)

    mT = 795.7747154594767
    sigma = 0.08e-9

    def gaussian_fun(t):

        return np.exp(-0.5 * (t / sigma)**2)

    zeeman = TimeZeeman((80 * mT, 0, 0), time_fun=gaussian_fun, name='hx')
    #zeeman = Zeeman((100*mT,0,0), name='hx')
    sim.add(zeeman, save_field=True)

    ts = np.linspace(0, 1e-9, 501)

    for t in ts:
        print('time', t)
        print('length:', sim.spin_length()[0:200])
        sim.run_until(t)
        sim.save_vtk()
示例#7
0
文件: main.py 项目: fangohr/fidimag
def excite_system(mesh):
    sim = Sim(mesh, name='dyn', driver='llg_stt')
    sim.set_tols(rtol=1e-8, atol=1e-10)
    sim.alpha = 0.5
    sim.gamma = 2.211e5
    sim.Ms = 8.6e5

    sim.set_m(np.load('m0.npy'))

    exch = UniformExchange(A=1.3e-11)
    sim.add(exch)
    dmi = DMI(D=-4e-3)
    sim.add(dmi)
    zeeman = Zeeman((0, 0, 4e5))
    sim.add(zeeman, save_field=True)

    sim.jx = -5e12
    sim.beta = 0

    ts = np.linspace(0, 0.5e-9, 101)
    for t in ts:
        print 'time', t
        sim.run_until(t)
        sim.save_vtk()
示例#8
0
文件: main.py 项目: fangohr/fidimag
def excite_system(mesh):
    sim = Sim(mesh, name='dyn', driver='llg_stt')
    sim.set_tols(rtol=1e-8, atol=1e-10)
    sim.alpha = 0.5
    sim.gamma = 2.211e5
    sim.Ms = 8.6e5

    sim.set_m(np.load('m0.npy'))

    exch = UniformExchange(A=1.3e-11)
    sim.add(exch)
    dmi = DMI(D=-4e-3)
    sim.add(dmi)
    zeeman = Zeeman((0, 0, 4e5))
    sim.add(zeeman, save_field=True)

    sim.jx = -5e12
    sim.beta = 0

    ts = np.linspace(0, 0.5e-9, 101)
    for t in ts:
        print 'time', t
        sim.run_until(t)
        sim.save_vtk()
示例#9
0
        # fig.show()
        fig.canvas.draw()

else:
    # Fidimag automatically saves the last state
    sim.do_precession = False
    sim.relax(dt=1e-13,
              stopping_dmdt=args.stopping_dmdt,
              max_steps=args.max_steps,
              save_m_steps=args.save_files,
              save_vtk_steps=args.save_files)

    # Save final states
    sim.save_m()
    sim.save_vtk()

# -------------------------------------------------------------------------
# Files -------------------------------------------------------------------
# -------------------------------------------------------------------------

npy_dir = 'npys/'
vtk_dir = 'vtks/'
txt_dir = 'txts/'

if not os.path.exists(npy_dir):
    os.makedirs(npy_dir)
if not os.path.exists(vtk_dir):
    os.makedirs(vtk_dir)
if not os.path.exists(txt_dir):
    os.makedirs(txt_dir)
示例#10
0
# Prepare simulation

# We define the cylinder with the Magnetisation function
sim = Sim(mesh, name='skyrmion')
sim.Ms = cylinder

# To get a faster relaxation, we tune the LLG equation parameters
sim.do_precession = False
sim.alpha = 0.5

# Initial magnetisation:
sim.set_m(init_m)

# Energies:

# Exchange
sim.add(UniformExchange(A=A))

# Bulk DMI
sim.add(DMI(D=D))

# Relax the system
sim.relax(dt=1e-12, stopping_dmdt=0.0001, max_steps=5000,
          save_m_steps=None,
          save_vtk_steps=None
          )

# Save the final relaxed state and a vtk file
np.save('sk_up.npy', sim.spin)
sim.save_vtk()