示例#1
0
    def test_add_coordinates(self):
        ds = xr.Dataset()
        TemplateUtil.add_geolocation_variables(ds, 13, 108)

        TemplateUtil.add_coordinates(ds)

        x = ds["x"]
        self.assertEqual((13, ), x.shape)
        self.assertEqual(np.uint16, x.dtype)

        y = ds["y"]
        self.assertEqual((108, ), y.shape)
        self.assertEqual(np.uint16, y.dtype)
示例#2
0
    def add_easy_fcdr_variables(dataset, height, corr_dx=None, corr_dy=None, lut_size=None):
        # height is ignored - supplied just for interface compatibility tb 2017-02-05

        # reflectance
        default_array = DefaultData.create_default_array(FULL_SIZE, FULL_SIZE, np.float32, fill_value=np.NaN)
        variable = Variable(["y", "x"], default_array)
        variable.attrs["standard_name"] = "toa_bidirectional_reflectance_vis"
        variable.attrs["long_name"] = "top of atmosphere bidirectional reflectance factor per pixel of the visible band with central wavelength 0.7"
        tu.add_units(variable, "1")
        tu.add_encoding(variable, np.uint16, DefaultData.get_default_fill_value(np.uint16), 3.05176E-05, chunksizes=CHUNKSIZES)
        dataset["toa_bidirectional_reflectance_vis"] = variable

        # u_independent
        default_array = DefaultData.create_default_array(FULL_SIZE, FULL_SIZE, np.float32, fill_value=np.NaN)
        variable = Variable(["y", "x"], default_array)
        variable.attrs["long_name"] = "independent uncertainty per pixel"
        tu.add_units(variable, "1")
        tu.add_encoding(variable, np.uint16, DefaultData.get_default_fill_value(np.uint16), 3.05176E-05, chunksizes=CHUNKSIZES)
        dataset["u_independent_toa_bidirectional_reflectance"] = variable

        # u_structured
        default_array = DefaultData.create_default_array(FULL_SIZE, FULL_SIZE, np.float32, fill_value=np.NaN)
        variable = Variable(["y", "x"], default_array)
        variable.attrs["long_name"] = "structured uncertainty per pixel"
        tu.add_units(variable, "1")
        tu.add_encoding(variable, np.uint16, DefaultData.get_default_fill_value(np.uint16), 3.05176E-05, chunksizes=CHUNKSIZES)
        dataset["u_structured_toa_bidirectional_reflectance"] = variable

        # u_common
        dataset["u_common_toa_bidirectional_reflectance"] = tu.create_scalar_float_variable(long_name="common uncertainty per slot", units="1")

        dataset["sub_satellite_latitude_start"] = tu.create_scalar_float_variable(long_name="Latitude of the sub satellite point at image start", units="degrees_north")
        dataset["sub_satellite_longitude_start"] = tu.create_scalar_float_variable(long_name="Longitude of the sub satellite point at image start", units="degrees_east")
        dataset["sub_satellite_latitude_end"] = tu.create_scalar_float_variable(long_name="Latitude of the sub satellite point at image end", units="degrees_north")
        dataset["sub_satellite_longitude_end"] = tu.create_scalar_float_variable(long_name="Longitude of the sub satellite point at image end", units="degrees_east")

        tu.add_correlation_matrices(dataset, NUM_CHANNELS)

        if lut_size is not None:
            tu.add_lookup_tables(dataset, NUM_CHANNELS, lut_size=lut_size)

        if corr_dx is not None and corr_dy is not None:
            tu.add_correlation_coefficients(dataset, NUM_CHANNELS, corr_dx, corr_dy)

        tu.add_coordinates(dataset, ["vis", "wv", "ir"])
示例#3
0
    def test_add_coordinates_with_channel(self):
        ds = xr.Dataset()
        TemplateUtil.add_geolocation_variables(ds, 8, 11)
        default_array = DefaultData.create_default_array_3d(
            8, 11, 4, np.float32, np.NaN)
        ds["three_d"] = Variable(["channel", "y", "x"], default_array)

        TemplateUtil.add_coordinates(ds)

        x = ds["x"]
        self.assertEqual((8, ), x.shape)
        self.assertEqual(np.uint16, x.dtype)

        y = ds["y"]
        self.assertEqual((11, ), y.shape)
        self.assertEqual(np.uint16, y.dtype)

        channel = ds["channel"]
        self.assertEqual((4, ), channel.shape)
        self.assertEqual(np.uint16, channel.dtype)
示例#4
0
    def add_original_variables(dataset, height, srf_size=None):
        tu.add_geolocation_variables(dataset,
                                     SWATH_WIDTH,
                                     height,
                                     chunksizes=CHUNKS_2D)
        tu.add_quality_flags(dataset,
                             SWATH_WIDTH,
                             height,
                             chunksizes=CHUNKS_2D)

        # Time
        default_array = DefaultData.create_default_vector(height,
                                                          np.float64,
                                                          fill_value=np.NaN)
        variable = Variable(["y"], default_array)
        tu.add_fill_value(variable, np.NaN)
        tu.add_units(variable, "s")
        variable.attrs["standard_name"] = "time"
        variable.attrs[
            "long_name"] = "Acquisition time in seconds since 1970-01-01 00:00:00"
        dataset["Time"] = variable

        # relative_azimuth_angle
        default_array = DefaultData.create_default_array(SWATH_WIDTH,
                                                         height,
                                                         np.float32,
                                                         fill_value=np.NaN)
        variable = Variable(["y", "x"], default_array)
        variable.attrs["standard_name"] = "relative_azimuth_angle"
        tu.add_units(variable, "degree")
        tu.add_encoding(variable,
                        np.int16,
                        DefaultData.get_default_fill_value(np.int16),
                        0.01,
                        chunksizes=CHUNKS_2D)
        variable.attrs["valid_max"] = 18000
        variable.attrs["valid_min"] = -18000
        tu.add_geolocation_attribute(variable)
        dataset["relative_azimuth_angle"] = variable

        # satellite_zenith_angle
        default_array = DefaultData.create_default_array(SWATH_WIDTH,
                                                         height,
                                                         np.float32,
                                                         fill_value=np.NaN)
        variable = Variable(["y", "x"], default_array)
        variable.attrs["standard_name"] = "sensor_zenith_angle"
        tu.add_units(variable, "degree")
        tu.add_encoding(variable,
                        np.int16,
                        DefaultData.get_default_fill_value(np.int16),
                        0.01,
                        chunksizes=CHUNKS_2D)
        variable.attrs["valid_max"] = 9000
        variable.attrs["valid_min"] = 0
        tu.add_geolocation_attribute(variable)
        dataset["satellite_zenith_angle"] = variable

        # solar_zenith_angle
        default_array = DefaultData.create_default_array(SWATH_WIDTH,
                                                         height,
                                                         np.float32,
                                                         fill_value=np.NaN)
        variable = Variable(["y", "x"], default_array)
        variable.attrs["standard_name"] = "solar_zenith_angle"
        tu.add_units(variable, "degree")
        tu.add_encoding(variable,
                        np.int16,
                        DefaultData.get_default_fill_value(np.int16),
                        0.01,
                        chunksizes=CHUNKS_2D)
        variable.attrs["valid_max"] = 18000
        variable.attrs["valid_min"] = 0
        tu.add_geolocation_attribute(variable)
        dataset["solar_zenith_angle"] = variable

        dataset["Ch1"] = AVHRR._create_channel_refl_variable(
            height, "Channel 1 Reflectance")
        dataset["Ch2"] = AVHRR._create_channel_refl_variable(
            height, "Channel 2 Reflectance")
        dataset["Ch3a"] = AVHRR._create_channel_refl_variable(
            height, "Channel 3a Reflectance")
        dataset["Ch3b"] = AVHRR._create_channel_bt_variable(
            height, "Channel 3b Brightness Temperature")
        dataset["Ch4"] = AVHRR._create_channel_bt_variable(
            height, "Channel 4 Brightness Temperature")
        dataset["Ch5"] = AVHRR._create_channel_bt_variable(
            height, "Channel 5 Brightness Temperature")

        # data_quality_bitmask
        default_array = DefaultData.create_default_array(SWATH_WIDTH,
                                                         height,
                                                         np.uint8,
                                                         fill_value=0)
        variable = Variable(["y", "x"], default_array)
        variable.attrs["standard_name"] = 'status_flag'
        variable.attrs["long_name"] = 'bitmask for quality per pixel'
        variable.attrs["flag_masks"] = '1,2'
        variable.attrs[
            'flag_meanings'] = 'bad_geolocation_timing_err bad_calibration_radiometer_err'
        tu.add_chunking(variable, CHUNKS_2D)
        tu.add_geolocation_attribute(variable)
        dataset['data_quality_bitmask'] = variable

        default_array = DefaultData.create_default_vector(height,
                                                          np.uint8,
                                                          fill_value=0)
        variable = Variable(["y"], default_array)
        variable.attrs["long_name"] = 'bitmask for quality per scanline'
        variable.attrs["standard_name"] = 'status_flag'
        variable.attrs["flag_masks"] = '1,2,4,8,16,32,64'
        variable.attrs[
            'flag_meanings'] = 'do_not_use bad_time bad_navigation bad_calibration channel3a_present solar_contamination_failure solar_contamination'
        dataset['quality_scanline_bitmask'] = variable

        default_array = DefaultData.create_default_array(N_CHANS,
                                                         height,
                                                         np.uint8,
                                                         fill_value=0)
        variable = Variable(["y", "channel"], default_array)
        variable.attrs["long_name"] = 'bitmask for quality per channel'
        variable.attrs["standard_name"] = 'status_flag'
        variable.attrs["flag_masks"] = '1,2'
        variable.attrs[
            'flag_meanings'] = 'bad_channel some_pixels_not_detected_2sigma'
        dataset['quality_channel_bitmask'] = variable

        if srf_size is None:
            srf_size = MAX_SRF_SIZE

        default_array = DefaultData.create_default_array(srf_size,
                                                         N_CHANS,
                                                         np.float32,
                                                         fill_value=np.NaN)
        variable = Variable(["channel", "n_frequencies"], default_array)
        variable.attrs["long_name"] = 'Spectral Response Function weights'
        variable.attrs[
            "description"] = 'Per channel: weights for the relative spectral response function'
        tu.add_encoding(variable, np.int16, -32768, 0.000033)
        dataset['SRF_weights'] = variable

        default_array = DefaultData.create_default_array(srf_size,
                                                         N_CHANS,
                                                         np.float32,
                                                         fill_value=np.NaN)
        variable = Variable(["channel", "n_frequencies"], default_array)
        variable.attrs["long_name"] = 'Spectral Response Function wavelengths'
        variable.attrs[
            "description"] = 'Per channel: wavelengths for the relative spectral response function'
        tu.add_encoding(variable, np.int32, -2147483648, 0.0001)
        tu.add_units(variable, "um")
        dataset['SRF_wavelengths'] = variable

        default_vector = DefaultData.create_default_vector(height,
                                                           np.uint8,
                                                           fill_value=255)
        variable = Variable(["y"], default_vector)
        tu.add_fill_value(variable, 255)
        variable.attrs["long_name"] = 'Indicator of original file'
        variable.attrs[
            "description"] = "Indicator for mapping each line to its corresponding original level 1b file. See global attribute 'source' for the filenames. 0 corresponds to 1st listed file, 1 to 2nd file."
        dataset["scanline_map_to_origl1bfile"] = variable

        default_vector = DefaultData.create_default_vector(
            height,
            np.int16,
            fill_value=DefaultData.get_default_fill_value(np.int16))
        variable = Variable(["y"], default_vector)
        tu.add_fill_value(variable,
                          DefaultData.get_default_fill_value(np.int16))
        variable.attrs["long_name"] = 'Original_Scan_line_number'
        variable.attrs[
            "description"] = 'Original scan line numbers from corresponding l1b records'
        dataset["scanline_origl1b"] = variable

        tu.add_coordinates(dataset,
                           ["Ch1", "Ch2", "Ch3a", "Ch3b", "Ch4", "Ch5"])
示例#5
0
    def add_coordinates(dataset):
        channel_names = []
        for i in range(1, 20):
            channel_names.append("Ch" + str(i))

        tu.add_coordinates(dataset, channel_names)
示例#6
0
 def add_coordinates(dataset):
     tu.add_coordinates(dataset, np.arange(1, 20))