def func(p, X, Y, Z, normals, fig, epsilon=0.7, alpha=np.pi/12): #print(points.shape, normals.shape, fig, epsilon, alpha) E = 0 if fig == 0: figure = F.sphere(p) elif fig == 1: figure = F.plane(p) elif fig==2: figure = F.cylinder(p) else: figure = F.cone(p) #dist[i] = i番目の点からの垂直距離 dist = figure.f_rep(X,Y,Z) / epsilon #theta[i] = i番目の点の法線とnormalとの偏差(角度の差) #np.sumは各点の法線同士の内積を取っている #[nf_1*ni_1, nf_2*ni_2, ...]みたいな感じ theta = np.arccos(np.abs(np.sum(figure.normal(X,Y,Z) * normals, axis=1))) / alpha E = np.sum(np.exp(-dist**2) + np.exp(-theta**2)) #最小化なのでマイナスを返す global E_list E_list.append(E) return -E
def func(p, X, Y, Z, normals, fig, epsilon=0.7, alpha=np.pi / 12): if fig == 0: figure = F.sphere(p) elif fig == 1: figure = F.plane(p) elif fig == 2: figure = F.cylinder(p) else: figure = F.cone(p) # dist[i] = i番目の点からの垂直距離 dist = figure.f_rep(X, Y, Z) / epsilon # theta[i] = i番目の点の法線とnormalとの偏差(角度の差) # np.sumは各点の法線同士の内積を取っている # [nf_1*ni_1, nf_2*ni_2, ...]みたいな感じ theta = np.arccos(np.abs(np.sum(figure.normal(X, Y, Z) * normals, axis=1))) / alpha # E = Σ (1-exp(-d^2))^2 + (1-exp(-θ^2))^2 E = np.sum((1 - np.exp(-dist**2))**2 + (1 - np.exp(-theta**2))**2) global E_list E_list.append(E) return E
def OptiViewer2(path, fig_type): #グラフの枠を作っていく fig = plt.figure() ax = Axes3D(fig) #軸にラベルを付けたいときは書く ax.set_xlabel("X") ax.set_ylabel("Y") ax.set_zlabel("Z") #点群,法線,OBBの対角線の長さ 取得 #points, X, Y, Z, normals, length = PreProcess(path) #自作の点群を扱いたいときはこちら #points, X, Y, Z, normals, length = PreProcess2() # PLYデータを扱いたいときはこちら points, X, Y, Z, normals, length = ViewPLY(path) print("points:{}".format(points.shape[0])) #点群を描画 #ax.plot(X,Y,Z,marker="o",linestyle='None',color="white") U, V, W = Disassemble(normals) #法線を描画 #ax.quiver(X, Y, Z, U, V, W, length=0.1, normalize=True) #OBBを描画 OBBViewer(ax, points) ###最適化### #result = figOptimize(points, normals, length, fig_type) #result = figOptimize2(X, Y, Z, normals, length, fig_type) result, label_list, max_label, num = RANSAC2(fig_type, points, normals, X, Y, Z, length) print(result) #fig_typeに応じた図形を選択 if fig_type==0: figure = F.sphere(result) elif fig_type==1: figure = F.plane(result) elif fig_type==2: figure = F.cylinder(result) else: figure = F.cone(result) #最適化された図形を描画 #plot_implicit(ax, figure.f_rep, points, AABB_size=1, contourNum=30) print("num:{}".format(num)) # ラベルに色分けして点群プロット LabelViewer(ax, points, label_list, max_label) #最後に.show()を書いてグラフ表示 plt.show()
def RANSAC2(fig, points, normals, X, Y, Z, length): # 図形に応じてRANSAC if fig==0: res1, figure1 = SphereDict(points, normals, X, Y, Z, length) epsilon, alpha = 0.01*length, np.pi/12 elif fig==1: res1, figure1 = PlaneDict(points, normals, X, Y, Z, length) epsilon, alpha = 0.08*length, np.pi/9 elif fig==2: res1, figure1 = CylinderDict(points, normals, X, Y, Z, length) epsilon, alpha = 0.01*length, np.pi/12 elif fig==3: res1, figure1 = ConeDict(points, normals, X, Y, Z, length) epsilon, alpha = 0.03*length, np.pi/9 # フィット点を抽出 MX1, MY1, MZ1, num1, index1 = CountPoints(figure1, points, X, Y, Z, normals, epsilon=epsilon, alpha=alpha) print("BEFORE_num:{}".format(num1)) if num1!=0: # フィット点を入力にフィッティング処理 res2 = Fitting(MX1, MY1, MZ1, normals[index1], length, fig, figure1.p, epsilon=epsilon, alpha=alpha) print(res2.x) if fig==0: figure2 = F.sphere(res2.x) elif fig==1: figure2 = F.plane(res2.x) elif fig==2: figure2 = F.cylinder(res2.x) elif fig==3: figure2 = F.cone(res2.x) # フィッティング後のスコア出力 _, _, _, num2, _ = CountPoints(figure2, points, X, Y, Z, normals, epsilon=epsilon, alpha=alpha, plotFlag=True) print("AFTER_num:{}".format(num2)) # フィッティング後の方が良ければres2を出力 if num2 >= num1: label_list, max_label, max_label_num = CountPoints(figure2, points, X, Y, Z, normals, epsilon=epsilon, alpha=alpha, printFlag=True, labelFlag=True, plotFlag=True) return res2.x, label_list, max_label, max_label_num #X, Y, Z, num, index = CountPoints(figure2, points, X, Y, Z, normals, epsilon=epsilon, alpha=alpha) # res1のスコア0 OR res2よりスコアが多い => res1を出力 label_list, max_label, max_label_num = CountPoints(figure1, points, X, Y, Z, normals, epsilon=epsilon, alpha=alpha, printFlag=True, labelFlag=True, plotFlag=True) #X, Y, Z, num, index = CountPoints(figure2, points, X, Y, Z, normals, epsilon=epsilon, alpha=alpha) return res1, label_list, max_label, max_label_num
def SphereDict(points, normals, X, Y, Z, length): n = points.shape[0] N = 5000 # ランダムに2点ずつN組抽出 #index = np.array([np.random.choice(n, 2, replace=False) for i in range(N)]) index = np.random.choice(n, size=(int((n-n%2)/2), 2), replace=False) points_set = points[index, :] normals_set = normals[index, :] num = points_set.shape[0] # c = p1 - r*n1 # c = p2 - r*n2 より # r = (p1-p2)*(n1-n2)/|n1-n2|^2, c = p1 - r*n1となる radius = lambda p1, p2, n1, n2 : np.dot(p1-p2, n1-n2) / np.linalg.norm(n1-n2)**2 center = lambda p1, n1, r : p1 - r * n1 # 二点の組[p1, p2], [n1, n2]をradius, centerに代入 r = [radius(points_set[i][0], points_set[i][1], normals_set[i][0], normals_set[i][1]) for i in range(num)] ### r < lengthの条件を満たさないものを除去 ### r = [i for i in r if abs(i) <= length] print(num) num = len(r) print(num) c = [center(points_set[i][0], normals_set[i][0], r[i]) for i in range(num)] # rはあとで絶対値をつける r = list(map(abs, r)) #print(np.array(r).shape, np.array(c).shape) # パラメータ # p = [x0, y0, z0, r] r = np.reshape(r, (num,1)) p = np.concatenate([c, r], axis=1) # 球面生成 Spheres = [F.sphere(p[i]) for i in range(num)] # フィットしている点の数を数える Scores = [CountPoints(Spheres[i], points, X, Y, Z, normals, epsilon=0.01*length, alpha=np.pi/12)[3] for i in range(num)] print(p[Scores.index(max(Scores))]) return p[Scores.index(max(Scores))], Spheres[Scores.index(max(Scores))]
#マークされた点 and ラベルを付けてない点をデキューした場合 if x in marked_index and label_list[x] == 0: #ラベルを付ける label_list[x] = label #K近傍をエンキュー for p in K_neighbor(points, points[x], k): q.put(p) #ラベルを変える label = label + 1 return np.array(label_list) figure = F.sphere([0.75, 0.75, 0.75, 0.75]) points, X, Y, Z, normals, length = PreProcess2() label_list , MX, MY, MZ = CountPoints(figure, points, X, Y, Z, normals, epsilon=0.04*length, alpha=np.pi/10) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') #軸にラベルを付けたいときは書く ax.set_xlabel("X") ax.set_ylabel("Y") ax.set_zlabel("Z") #points ax.plot(X, Y, Z, marker="o",linestyle="None",color="white") #マーク ax.plot(MX, MY, MZ, marker=".",linestyle="None",color="orange")
def DetectViewer2(path): #点群,法線,OBBの対角線の長さ 取得 #points, X, Y, Z, normals, length = PreProcess(path) #自作の点群を扱いたいときはこちら #points, X, Y, Z, normals, length = PreProcess2() # PLYデータを扱いたいときはこちら points, X, Y, Z, normals, length = ViewPLY(path) #元の点群データを保存しておく ori_points = points[:, :] #ori_normals = normals[:, :] # 検知した図形のリスト fitting_figures = [] print("points:{}".format(points.shape[0])) ###グラフ初期化### ax = ViewerInit(points, X, Y, Z, normals) while points.shape[0] >= ori_points.shape[0] * 0.05: print("points:{}".format(points.shape[0])) scores = [] paras = [] indices = [] ###最適化### for fig_type in [0,1,2,3]: ###グラフ初期化## #ax = ViewerInit(points, X, Y, Z, normals) #図形フィッティング #result = figOptimize(points, normals, length, fig_type) #result = figOptimize2(X, Y, Z, normals, length, fig_type) result, MX, MY, MZ, num, index = RANSAC(fig_type, points, normals, X, Y, Z, length) print(result) #fig_typeに応じた図形を選択 if fig_type==0: figure = F.sphere(result) elif fig_type==1: figure = F.plane(result) elif fig_type==2: figure = F.cylinder(result) elif fig_type==3: figure = F.cone(result) #図形描画 #plot_implicit(ax, figure.f_rep, points, AABB_size=1, contourNum=50) #図形に対して"条件"を満たす点群を数える、これをスコアとする #MX, MY, MZ, num, index = CountPoints(figure, points, X, Y, Z, normals, epsilon=0.08*length, alpha=np.pi/9) #print("AFTER_num:{}".format(num)) #条件を満たす点群, 最適化された図形描画 #ax.plot(MX,MY,MZ,marker=".",linestyle='None',color="orange") #最後に.show()を書いてグラフ表示 #plt.show() #スコアとパラメータ,インデックスを保存 scores.append(num) paras.append(result) indices.append(index) print("="*100) if max(scores) <= ori_points.shape[0] * 0.05: print("おわり!") break ###グラフ初期化### ax = ViewerInit(points, X, Y, Z, normals) # スコアが最大の図形を描画 best_fig = scores.index(max(scores)) # スコアが最大の図形を保存 fitting_figures.append([best_fig, paras[best_fig]]) if best_fig==0: figure = F.sphere(paras[best_fig]) print("球の勝ち") elif best_fig==1: figure = F.plane(paras[best_fig]) print("平面の勝ち") elif best_fig==2: figure = F.cylinder(paras[best_fig]) print("円柱の勝ち") elif best_fig==3: figure = F.cone(paras[best_fig]) print("円錐の勝ち") # フィット点描画 ax.plot(X[indices[best_fig]],Y[indices[best_fig]],Z[indices[best_fig]],\ marker=".",linestyle='None',color="orange") # 図形描画 plot_implicit(ax, figure.f_rep, points, AABB_size=1, contourNum=15) plt.show() #フィットした点群を削除 points = np.delete(points, indices[best_fig], axis=0) normals = np.delete(normals, indices[best_fig], axis=0) X, Y, Z = Disassemble(points) ###グラフ初期化### #ax = ViewerInit(points, X, Y, Z, normals) #plt.show() ################## print("="*100) print(len(fitting_figures), fitting_figures) plt.show()
def OptiViewer(path, fig_type): #点群,法線,OBBの対角線の長さ 取得 #points, X, Y, Z, normals, length = PreProcess(path) #自作の点群を扱いたいときはこちら #points, X, Y, Z, normals, length = PreProcess2() # PLYデータを扱いたいときはこちら points, X, Y, Z, normals, length = ViewPLY(path) #U, V, W = Disassemble(normals) #法線を描画 #ax.quiver(X, Y, Z, U, V, W, length=0.1, normalize=True) while True: print("points:{}".format(points.shape[0])) #グラフの枠を作っていく fig = plt.figure() ax = Axes3D(fig) #軸にラベルを付けたいときは書く ax.set_xlabel("X") ax.set_ylabel("Y") ax.set_zlabel("Z") #点群を描画 ax.plot(X,Y,Z,marker="o",linestyle='None',color="white") #OBBを描画 OBBViewer(ax, points) ###最適化### #result = figOptimize(points, normals, length, fig_type) #result = figOptimize2(X, Y, Z, normals, length, fig_type) result, MX, MY, MZ, num, index = RANSAC(fig_type, points, normals, X, Y, Z, length) print(result) #fig_typeに応じた図形を選択 if fig_type==0: figure = F.sphere(result) elif fig_type==1: figure = F.plane(result) elif fig_type==2: figure = F.cylinder(result) else: figure = F.cone(result) #最適化された図形を描画 plot_implicit(ax, figure.f_rep, points, AABB_size=1, contourNum=15) #S_optを検出 #MX, MY, MZ, num, index = CountPoints(figure, points, X, Y, Z, normals, epsilon=0.08*length, alpha=np.pi/9) print("num:{}".format(num)) ax.plot(MX,MY,MZ,marker=".",linestyle='None',color="red") # グラフ表示 plt.show() # フィットした点群を削除 points = np.delete(points, index, axis=0) normals = np.delete(normals, index, axis=0) X, Y, Z = Disassemble(points)
def DetectViewer(path): #点群,法線,OBBの対角線の長さ 取得 #points, X, Y, Z, normals, length = PreProcess(path) #自作の点群を扱いたいときはこちら points, X, Y, Z, normals, length = PreProcess2() #元の点群データを保存しておく ori_points = points[:, :] fitting_figures = [] print("points:{}".format(points.shape[0])) ###グラフ初期化### ax = ViewerInit(points, X, Y, Z, normals) while points.shape[0] >= ori_points.shape[0] * 0.01: print("points:{}".format(points.shape[0])) scores = [] paras = [] indices = [] ###最適化### for fig_type in [0, 1]: #a = input() ###グラフ初期化## #ax = ViewerInit(points, X, Y, Z, normals) #図形フィッティング #result = figOptimize(points, normals, length, fig_type) result = figOptimize2(X, Y, Z, normals, length, fig_type) print(result.x) #fig_typeに応じた図形を選択 if fig_type==0: figure = F.sphere(result.x) elif fig_type==1: figure = F.plane(result.x) #図形描画 #plot_implicit(ax, figure.f_rep, points, AABB_size=1, contourNum=50) #図形に対して"条件"を満たす点群を数える、これをスコアとする MX, MY, MZ, num, index = CountPoints(figure, points, X, Y, Z, normals, epsilon=0.08*length, alpha=np.pi/9) print("num:{}".format(num)) #条件を満たす点群, 最適化された図形描画 #ax.plot(MX,MY,MZ,marker=".",linestyle='None',color="orange") #最後に.show()を書いてグラフ表示 #plt.show() #スコアとパラメータ,インデックスを保存 scores.append(num) paras.append(result.x) indices.append(index) if sum(scores) <= 5: print("もっかい!\n") continue ###グラフ初期化### #ax = ViewerInit(points, X, Y, Z, normals) #スコアが最大の図形を描画 best_fig = scores.index(max(scores)) if best_fig==0: figure = F.sphere(paras[best_fig]) fitting_figures.append("球:[" + ','.join(map(str, list(paras[best_fig]))) + "]") elif best_fig==1: figure = F.plane(paras[best_fig]) fitting_figures.append("平面:[" + ','.join(map(str, list(paras[best_fig]))) + "]") plot_implicit(ax, figure.f_rep, points, AABB_size=1, contourNum=15) #plt.show() #フィットした点群を削除 points = np.delete(points, indices[best_fig], axis=0) normals = np.delete(normals, indices[best_fig], axis=0) X, Y, Z = Disassemble(points) ###グラフ初期化### #ax = ViewerInit(points, X, Y, Z, normals) #plt.show() ################## print("points:{}".format(points.shape[0])) print(len(fitting_figures), fitting_figures) plt.show()
import numpy as np import figure2 as F from method import * def norm_sphere(x, y, z): return 1 - np.sqrt(x**2 + y**2 + z**2) S1 = F.sphere([0, 0, 0, 1]) S2 = F.sphere([1, 0, 0, 0.5]) S3 = F.sphere([-1, 0, 0, 0.5]) kirby = F.OR(S1, F.OR(S2, S3)) AND_S = F.AND(S1, S2) S4 = F.sphere([np.sin(np.pi / 6), np.cos(np.pi / 6), 0, 1]) S5 = F.sphere([-np.sin(np.pi / 6), np.cos(np.pi / 6), 0, 1]) AND_BEN = F.AND(S1, F.AND(S4, S5)) P_Z0 = F.plane([0, 0, -1, 0]) P_Z1 = F.plane([0, 0, 1, 1]) P_Z_1 = F.plane([0, 0, -1, 1]) P_X0 = F.plane([-1, 0, 0, 0]) P_X1 = F.plane([1, 0, 0, 1]) P_X_1 = F.plane([-1, 0, 0, 1]) P_Y0 = F.plane([0, -1, 0, 0]) P_Y1 = F.plane([0, 1, 0, 1]) P_Y_1 = F.plane([0, -1, 0, 1])