def display_results_in_GUI( trackmate ): """ Creates and show a TrackMate GUI to configure the display of the results. This might not always be desriable in e.g. batch mode, but this allows to save the data, export statistics in IJ tables then save them to CSV, export results to AVI etc... """ gui = TrackMateGUIController( trackmate ) # Link displayer and GUI. model = trackmate.getModel() selectionModel = SelectionModel( model) displayer = HyperStackDisplayer( model, selectionModel, imp ) gui.getGuimodel().addView( displayer ) displaySettings = gui.getGuimodel().getDisplaySettings() # # new # displaySettings.put( "Color", Color(128,128,128) ) # # displaySettings.put( "TrackDisplayDepth", 42 ) # displaySettings.put( "SpotsVisible", True ) # print(displaySettings) for key in displaySettings.keySet(): displayer.setDisplaySettings( key, displaySettings.get( key ) ) displayer.render() displayer.refresh() gui.setGUIStateString( 'ConfigureViews' )
#------------ trackmate.process() #---------------- # Display results #---------------- model.getLogger().log('Found ' + str(model.getTrackModel().nTracks(True)) + ' tracks.') loglist = [] selectionModel = SelectionModel(model) displayer = HyperStackDisplayer(model, selectionModel, imp) # Configure display settings displayer.setDisplaySettings(TrackMateModelView.KEY_SPOT_COLORING, SpotColorGeneratorPerTrackFeature(trackmate.getModel(), Spot.QUALITY)) displayer.setDisplaySettings(TrackMateModelView.KEY_TRACK_COLORING, PerTrackFeatureColorGenerator(trackmate.getModel(), TrackIndexAnalyzer.TRACK_INDEX)) displayer.setDisplaySettings(TrackMateModelView.KEY_TRACK_DISPLAY_MODE, TrackMateModelView.TRACK_DISPLAY_MODE_LOCAL) displayer.setDisplaySettings(TrackMateModelView.KEY_TRACK_DISPLAY_DEPTH, int(round(10/deltaT))) # Display the displayer displayer.render() displayer.refresh() # The feature model, that stores edge and track features. fm = model.getFeatureModel() for id in model.getTrackModel().trackIDs(True): # Fetch the track feature from the feature model. v = fm.getTrackFeature(id, 'TRACK_MEDIAN_SPEED')
def runTrackMate(imp): import fiji.plugin.trackmate.Settings as Settings import fiji.plugin.trackmate.Model as Model import fiji.plugin.trackmate.SelectionModel as SelectionModel import fiji.plugin.trackmate.TrackMate as TrackMate import fiji.plugin.trackmate.Logger as Logger import fiji.plugin.trackmate.detection.DetectorKeys as DetectorKeys import fiji.plugin.trackmate.detection.DogDetectorFactory as DogDetectorFactory import fiji.plugin.trackmate.tracking.sparselap.SparseLAPTrackerFactory as SparseLAPTrackerFactory import fiji.plugin.trackmate.tracking.LAPUtils as LAPUtils import fiji.plugin.trackmate.visualization.hyperstack.HyperStackDisplayer as HyperStackDisplayer import fiji.plugin.trackmate.features.FeatureFilter as FeatureFilter import fiji.plugin.trackmate.features.FeatureAnalyzer as FeatureAnalyzer import fiji.plugin.trackmate.features.spot.SpotContrastAndSNRAnalyzerFactory as SpotContrastAndSNRAnalyzerFactory import fiji.plugin.trackmate.action.ExportStatsToIJAction as ExportStatsToIJAction import fiji.plugin.trackmate.io.TmXmlReader as TmXmlReader import fiji.plugin.trackmate.action.ExportTracksToXML as ExportTracksToXML import fiji.plugin.trackmate.io.TmXmlWriter as TmXmlWriter import fiji.plugin.trackmate.features.ModelFeatureUpdater as ModelFeatureUpdater import fiji.plugin.trackmate.features.SpotFeatureCalculator as SpotFeatureCalculator import fiji.plugin.trackmate.features.spot.SpotContrastAndSNRAnalyzer as SpotContrastAndSNRAnalyzer import fiji.plugin.trackmate.features.spot.SpotIntensityAnalyzerFactory as SpotIntensityAnalyzerFactory import fiji.plugin.trackmate.features.track.TrackSpeedStatisticsAnalyzer as TrackSpeedStatisticsAnalyzer import fiji.plugin.trackmate.util.TMUtils as TMUtils import fiji.plugin.trackmate.visualization.trackscheme.TrackScheme as TrackScheme import fiji.plugin.trackmate.visualization.PerTrackFeatureColorGenerator as PerTrackFeatureColorGenerator #------------------------- # Instantiate model object #------------------------- nFrames = imp.getNFrames() model = Model() # Set logger #model.setLogger(Logger.IJ_LOGGER) #------------------------ # Prepare settings object #------------------------ settings = Settings() settings.setFrom(imp) # Configure detector settings.detectorFactory = DogDetectorFactory() settings.detectorSettings = { DetectorKeys.KEY_DO_SUBPIXEL_LOCALIZATION: True, DetectorKeys.KEY_RADIUS: 12.30, DetectorKeys.KEY_TARGET_CHANNEL: 1, DetectorKeys.KEY_THRESHOLD: 100., DetectorKeys.KEY_DO_MEDIAN_FILTERING: False, } # Configure tracker settings.trackerFactory = SparseLAPTrackerFactory() settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap() settings.trackerSettings['LINKING_MAX_DISTANCE'] = 10.0 settings.trackerSettings['GAP_CLOSING_MAX_DISTANCE'] = 10.0 settings.trackerSettings['MAX_FRAME_GAP'] = 3 # Add the analyzers for some spot features. # You need to configure TrackMate with analyzers that will generate # the data you need. # Here we just add two analyzers for spot, one that computes generic # pixel intensity statistics (mean, max, etc...) and one that computes # an estimate of each spot's SNR. # The trick here is that the second one requires the first one to be in # place. Be aware of this kind of gotchas, and read the docs. settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory()) settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory()) # Add an analyzer for some track features, such as the track mean speed. settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer()) settings.initialSpotFilterValue = 1 print(str(settings)) #---------------------- # Instantiate trackmate #---------------------- trackmate = TrackMate(model, settings) #------------ # Execute all #------------ ok = trackmate.checkInput() if not ok: sys.exit(str(trackmate.getErrorMessage())) ok = trackmate.process() if not ok: sys.exit(str(trackmate.getErrorMessage())) #---------------- # Display results #---------------- selectionModel = SelectionModel(model) displayer = HyperStackDisplayer(model, selectionModel, imp) displayer.render() displayer.refresh() #--------------------- # Select correct spots #--------------------- # Prepare display. sm = SelectionModel(model) color = PerTrackFeatureColorGenerator(model, 'TRACK_INDEX') # launch TrackScheme to select spots and tracks trackscheme = TrackScheme(model, sm) trackscheme.setDisplaySettings('TrackColoring', color) trackscheme.render() # Update image with TrackScheme commands view = HyperStackDisplayer(model, sm, imp) view.setDisplaySettings('TrackColoring', color) view.render() # Wait for the user to select correct spots and tracks before collecting data dialog = WaitForUserDialog( "Spots", "Delete incorrect spots and edit tracks if necessary. (Press ESC to cancel analysis)" ) dialog.show() if dialog.escPressed(): IJ.run("Remove Overlay", "") imp.close() return ([], nFrames) # The feature model, that stores edge and track features. #model.getLogger().log('Found ' + str(model.getTrackModel().nTracks(True)) + ' tracks.') fm = model.getFeatureModel() crds_perSpot = [] for id in model.getTrackModel().trackIDs(True): # Fetch the track feature from the feature model.(remove """ to enable) """v = fm.getTrackFeature(id, 'TRACK_MEAN_SPEED') model.getLogger().log('') model.getLogger().log('Track ' + str(id) + ': mean velocity = ' + str(v) + ' ' + model.getSpaceUnits() + '/' + model.getTimeUnits())""" trackID = str(id) track = model.getTrackModel().trackSpots(id) spot_track = {} for spot in track: sid = spot.ID() # Fetch spot features directly from spot. x = spot.getFeature('POSITION_X') y = spot.getFeature('POSITION_Y') t = spot.getFeature('FRAME') q = spot.getFeature('QUALITY') snr = spot.getFeature('SNR') mean = spot.getFeature('MEAN_INTENSITY') #model.getLogger().log('\tspot ID = ' + str(sid) + ', x='+str(x)+', y='+str(y)+', t='+str(t)+', q='+str(q) + ', snr='+str(snr) + ', mean = ' + str(mean)) spot_track[t] = (x, y) crds_perSpot.append(spot_track) #print ("Spot", crds_perSpot.index(spot_track),"has the following coordinates:", crds_perSpot[crds_perSpot.index(spot_track)]) return (crds_perSpot, nFrames)
# Commit all of this. model.endUpdate() # This actually triggers the features to be recalculated. # Prepare display. sm = SelectionModel(model) color = PerTrackFeatureColorGenerator(model, 'TRACK_INDEX') # The last line does not work if you did not compute the 'TRACK_INDEX' # feature earlier. # The TrackScheme view is a bit hard to interpret. trackscheme = TrackScheme(model, sm) trackscheme.setDisplaySettings('TrackColoring', color) trackscheme.render() # You can create an hyperstack viewer without specifying any ImagePlus. # It will then create a dummy one tuned to display the model content. view = HyperStackDisplayer(model, sm) # Display tracks as comets view.setDisplaySettings('TrackDisplaymode', 1) view.setDisplaySettings('TrackDisplayDepth', 20) view.setDisplaySettings('TrackColoring', color) view.render() # Animate it a bit imp = view.getImp() imp.getCalibration().fps = 30 Animator().run('start')
def processImages(cfg, wellName, wellPath, images): firstImage = IJ.openImage(images[0][0][0][0]) imgWidth = firstImage.getWidth() imgHeight = firstImage.getHeight() for c in range(0, cfg.getValue(ELMConfig.numChannels)): chanName = cfg.getValue(ELMConfig.chanLabel)[c] if cfg.getValue(ELMConfig.chanLabel)[c] in cfg.getValue( ELMConfig.chansToSkip): continue imColorSeq = ImageStack(imgWidth, imgHeight) imSeq = ImageStack(imgWidth, imgHeight) totalHist = [] for z in range(0, cfg.getValue(ELMConfig.numZ)): for t in range(0, cfg.getValue(ELMConfig.numT)): currIP = IJ.openImage(images[c][z][t][0]) imColorSeq.addSlice(currIP.duplicate().getProcessor()) currIP = ELMImageUtils.getGrayScaleImage( currIP, c, chanName, cfg) imSeq.addSlice(currIP.getProcessor()) imgStats = currIP.getStatistics() currHist = imgStats.getHistogram() if not totalHist: for i in range(len(currHist)): totalHist.append(currHist[i]) else: for i in range(len(currHist)): totalHist[i] += currHist[i] if cfg.hasValue(ELMConfig.thresholdFromWholeRange) and cfg.getValue( ELMConfig.thresholdFromWholeRange) == True: threshMethod = "Otsu" # Default works very poorly for this data if cfg.hasValue(ELMConfig.thresholdMethod): threshMethod = cfg.getValue(ELMConfig.thresholdMethod) thresholder = AutoThresholder() computedThresh = thresholder.getThreshold(threshMethod, totalHist) cfg.setValue(ELMConfig.imageThreshold, computedThresh) print("\tComputed threshold from total hist (" + threshMethod + "): " + str(computedThresh)) print() else: print("\tUsing threshold computed on individual images!") print() computedThresh = 0 chanName = cfg.getValue(ELMConfig.chanLabel)[c] imp = ImagePlus() imp.setStack(imSeq) imp.setDimensions(1, 1, cfg.getValue(ELMConfig.numT)) imp.setTitle(wellName + ", channel " + str(c)) impColor = ImagePlus() impColor.setStack(imColorSeq) impColor.setDimensions(1, 1, cfg.getValue(ELMConfig.numT)) impColor.setTitle(wellName + ", channel " + str(c) + " (Color)") #---------------------------- # Create the model object now #---------------------------- # Some of the parameters we configure below need to have # a reference to the model at creation. So we create an # empty model now. model = Model() # Send all messages to ImageJ log window. model.setLogger(Logger.IJ_LOGGER) pa_features = [ "Area", "PercentArea", "Mean", "StdDev", "Mode", "Min", "Max", "X", "Y", "XM", "YM", "Perim.", "BX", "BY", "Width", "Height", "Major", "Minor", "Angle", "Circ.", "Feret", "IntDen", "Median", "Skew", "Kurt", "RawIntDen", "FeretX", "FeretY", "FeretAngle", "MinFeret", "AR", "Round", "Solidity" ] featureNames = {} featureShortNames = {} featureDimensions = {} isInt = {} for feature in pa_features: featureNames[feature] = feature featureShortNames[feature] = feature featureDimensions[feature] = Dimension.STRING isInt[feature] = False model.getFeatureModel().declareSpotFeatures(pa_features, featureNames, featureShortNames, featureDimensions, isInt) #------------------------ # Prepare settings object #------------------------ settings = Settings() settings.setFrom(imp) dbgPath = os.path.join(wellPath, 'debugImages_' + chanName) if not os.path.exists(dbgPath): os.makedirs(dbgPath) if cfg.hasValue(ELMConfig.thresholdMethod): threshMethod = cfg.getValue(ELMConfig.thresholdMethod) else: threshMethod = "Default" # Configure detector - We use the Strings for the keys settings.detectorFactory = ThresholdDetectorFactory() settings.detectorSettings = { 'THRESHOLD': computedThresh, 'ABOVE': True, 'DEBUG_MODE': True, 'DEBUG_OUTPATH': dbgPath, 'THRESHOLD_METHOD': threshMethod } #settings.detectorFactory = LocalThresholdDetectorFactory() #settings.detectorSettings = { # 'THRESHOLD' : computedThresh, # 'DEBUG_MODE' : True, # 'DEBUG_OUTPATH' : dbgPath #} # Configure spot filters - Classical filter on quality filter1 = FeatureFilter('QUALITY', 150, True) settings.addSpotFilter(filter1) # Configure tracker - We want to allow merges and fusions settings.trackerFactory = SparseLAPTrackerFactory() settings.trackerSettings = LAPUtils.getDefaultLAPSettingsMap( ) # almost good enough # Linking settings.trackerSettings[TrackerKeys.KEY_LINKING_MAX_DISTANCE] = 220.0 # in pixels linkFeaturePenalties = HashMap() linkFeaturePenalties['Area'] = 1.0 linkFeaturePenalties['POSITION_X'] = 1.0 linkFeaturePenalties['POSITION_Y'] = 1.0 #linkFeaturePenalties['Circ.'] = 1.0 #linkFeaturePenalties['Mean'] = 1.0 settings.trackerSettings[ TrackerKeys.KEY_LINKING_FEATURE_PENALTIES] = linkFeaturePenalties # Gap closing settings.trackerSettings[TrackerKeys.KEY_ALLOW_GAP_CLOSING] = True settings.trackerSettings[TrackerKeys.KEY_GAP_CLOSING_MAX_FRAME_GAP] = 8 settings.trackerSettings[ TrackerKeys.KEY_GAP_CLOSING_MAX_DISTANCE] = 120.0 # in pixels #settings.trackerSettings[TrackerKeys.KEY_GAP_CLOSING_FEATURE_PENALTIES] = new HashMap<>(DEFAULT_GAP_CLOSING_FEATURE_PENALTIES)); # Track splitting settings.trackerSettings[TrackerKeys.KEY_ALLOW_TRACK_SPLITTING] = False settings.trackerSettings[TrackerKeys.KEY_SPLITTING_MAX_DISTANCE] = 45.0 # in pixels #settings.trackerSettings[TrackerKeys.KEY_SPLITTING_FEATURE_PENALTIES] = new HashMap<>(DEFAULT_SPLITTING_FEATURE_PENALTIES)); # Track merging settings.trackerSettings[TrackerKeys.KEY_ALLOW_TRACK_MERGING] = True settings.trackerSettings[TrackerKeys.KEY_MERGING_MAX_DISTANCE] = 45.0 # in pixels #settings.trackerSettings[TrackerKeys.KEY_MERGING_FEATURE_PENALTIES] = new HashMap<>(DEFAULT_MERGING_FEATURE_PENALTIES)); # Others settings.trackerSettings[TrackerKeys.KEY_BLOCKING_VALUE] = float("inf") settings.trackerSettings[ TrackerKeys.KEY_ALTERNATIVE_LINKING_COST_FACTOR] = 1.05 settings.trackerSettings[TrackerKeys.KEY_CUTOFF_PERCENTILE] = 0.9 # Configure track analyzers - Later on we want to filter out tracks # based on their displacement, so we need to state that we want # track displacement to be calculated. By default, out of the GUI, # no features are calculated. # The displacement feature is provided by the TrackDurationAnalyzer. settings.addTrackAnalyzer(TrackDurationAnalyzer()) settings.addTrackAnalyzer(TrackBranchingAnalyzer()) settings.addTrackAnalyzer(TrackIndexAnalyzer()) settings.addTrackAnalyzer(TrackLocationAnalyzer()) settings.addTrackAnalyzer(TrackSpeedStatisticsAnalyzer()) settings.addSpotAnalyzerFactory(SpotIntensityAnalyzerFactory()) settings.addSpotAnalyzerFactory(SpotContrastAndSNRAnalyzerFactory()) # Configure track filters - We want to get rid of the two immobile spots at # the bottom right of the image. Track displacement must be above 10 pixels. #filter2 = FeatureFilter('TRACK_DISPLACEMENT', 1, True) #settings.addTrackFilter(filter2) #filter2 = FeatureFilter('TRACK_DISPLACEMENT', 1, True) #settings.addTrackFilter(filter2) #print("Spot feature analyzers: " + settings.toStringFeatureAnalyzersInfo()) #------------------- # Instantiate plugin #------------------- trackmate = TrackMate(model, settings) trackmate.setNumThreads(1) #-------- # Process #-------- ok = trackmate.checkInput() if not ok: sys.exit(str(trackmate.getErrorMessage())) print("Processing " + chanName + "...") ok = trackmate.process() if not ok: sys.exit(str(trackmate.getErrorMessage())) #---------------- # Display results #---------------- print("Rendering...") # Set spot names based on track IDs # This allows track IDs to be displayed in the rendered video for tId in model.getTrackModel().trackIDs(True): trackSpots = model.getTrackModel().trackSpots(tId) for spot in trackSpots: spot.setName(str(tId)) # Determine sub-tracks within a track # Since tracks can merge, we want to keep track of which track a spot is # in prior to the merge spotToSubTrackMap = {} spotIt = model.getSpots().iterator(False) trackModel = model.getTrackModel() subTrackCount = {} while spotIt.hasNext(): spot = spotIt.next() spotEdges = trackModel.edgesOf(spot) # Find merge points within a track: ignore spots with fewer than 2 edges if (len(spotEdges) < 2): continue # We have a merge if we have multiple incoming edges incomingEdges = 0 edgeIt = spotEdges.iterator() ancestorSpots = [] while edgeIt.hasNext(): edge = edgeIt.next() src = trackModel.getEdgeSource(edge) dst = trackModel.getEdgeTarget(edge) if dst.ID() == spot.ID(): ancestorSpots.append(src) incomingEdges += 1 # Ignore non-merges if incomingEdges < 2: continue trackId = trackModel.trackIDOf(spot) if trackId in subTrackCount: subTrackId = subTrackCount[trackId] else: subTrackId = 1 for ancestorSpot in ancestorSpots: labelSubTrackAncestors(trackModel, spotToSubTrackMap, ancestorSpot, subTrackId, trackId, False) subTrackId += 1 subTrackCount[trackId] = subTrackId # Spots after the last merge still need to be labeled for tId in trackModel.trackIDs(True): trackSpots = trackModel.trackSpots(tId) spotIt = trackSpots.iterator() lastSpot = None while spotIt.hasNext(): spot = spotIt.next() outgoingEdges = 0 spotEdges = trackModel.edgesOf(spot) edgeIt = spotEdges.iterator() while edgeIt.hasNext(): edge = edgeIt.next() src = trackModel.getEdgeSource(edge) dst = trackModel.getEdgeTarget(edge) if src.ID() == spot.ID(): outgoingEdges += 1 if outgoingEdges == 0 and len(spotEdges) > 0: lastSpot = spot if tId in subTrackCount: subTrackId = subTrackCount[tId] else: subTrackId = 1 if not lastSpot == None: labelSubTrackAncestors(trackModel, spotToSubTrackMap, lastSpot, subTrackId, tId, True) # Create output file trackOut = os.path.join(wellPath, chanName + "_spotToTrackMap.csv") trackFile = open(trackOut, 'w') # Fetch the track feature from the feature model. trackFile.write('Spot Id, Track Sub Id, Track Id, Frame \n') for spotId in spotToSubTrackMap: trackFile.write( str(spotId) + ', ' + ','.join(spotToSubTrackMap[spotId]) + '\n') trackFile.close() # Write Edge Set trackOut = os.path.join(wellPath, chanName + "_mergeEdgeSet.csv") trackFile = open(trackOut, 'w') trackFile.write('Track Id, Spot Id, Spot Id \n') edgeIt = trackModel.edgeSet().iterator() while edgeIt.hasNext(): edge = edgeIt.next() src = trackModel.getEdgeSource(edge) dst = trackModel.getEdgeTarget(edge) trackId = trackModel.trackIDOf(edge) srcSubTrack = spotToSubTrackMap[src.ID()][0] dstSubTrack = spotToSubTrackMap[dst.ID()][0] if not srcSubTrack == dstSubTrack: trackFile.write( str(trackId) + ', ' + str(src.ID()) + ', ' + str(dst.ID()) + '\n') trackFile.close() selectionModel = SelectionModel(model) displayer = HyperStackDisplayer(model, selectionModel, impColor) displayer.setDisplaySettings( TrackMateModelView.KEY_TRACK_COLORING, PerTrackFeatureColorGenerator(model, TrackIndexAnalyzer.TRACK_INDEX)) displayer.setDisplaySettings( TrackMateModelView.KEY_SPOT_COLORING, SpotColorGeneratorPerTrackFeature(model, TrackIndexAnalyzer.TRACK_INDEX)) displayer.setDisplaySettings(TrackMateModelView.KEY_DISPLAY_SPOT_NAMES, True) displayer.setDisplaySettings( TrackMateModelView.KEY_TRACK_DISPLAY_MODE, TrackMateModelView.TRACK_DISPLAY_MODE_LOCAL_BACKWARD_QUICK) displayer.setDisplaySettings( TrackMateModelView.KEY_TRACK_DISPLAY_DEPTH, 2) displayer.render() displayer.refresh() trackmate.getSettings().imp = impColor coa = CaptureOverlayAction(None) coa.execute(trackmate) WindowManager.setTempCurrentImage(coa.getCapture()) IJ.saveAs('avi', os.path.join(wellPath, chanName + "_out.avi")) imp.close() impColor.close() displayer.clear() displayer.getImp().hide() displayer.getImp().close() coa.getCapture().hide() coa.getCapture().close() # Echo results with the logger we set at start: model.getLogger().log(str(model)) # The feature model, that stores edge and track features. fm = model.getFeatureModel() # Write output for tracks numTracks = model.getTrackModel().trackIDs(True).size() print "Writing track data for " + str(numTracks) + " tracks." trackDat = {} for tId in model.getTrackModel().trackIDs(True): track = model.getTrackModel().trackSpots(tId) # Ensure track spots dir exists trackOut = os.path.join(wellPath, chanName + "_track_spots") if not os.path.exists(trackOut): os.makedirs(trackOut) # Create output file trackOut = os.path.join(trackOut, "track_" + str(tId) + ".csv") trackFile = open(trackOut, 'w') # Write Header header = 'Name, ID, Frame, ' for feature in track.toArray()[0].getFeatures().keySet(): if feature == 'Frame': continue header += feature + ", " header = header[0:len(header) - 2] header += '\n' trackFile.write(header) # Write spot data avgTotalIntensity = 0 for spot in track: #print spot.echo() data = [ spot.getName(), str(spot.ID()), str(spot.getFeature('FRAME')) ] for feature in spot.getFeatures(): if feature == 'Frame': continue elif feature == 'TOTAL_INTENSITY': avgTotalIntensity += spot.getFeature(feature) data.append(str(spot.getFeature(feature))) trackFile.write(','.join(data) + '\n') trackFile.close() avgTotalIntensity /= len(track) # Write out track stats # Make sure dir exists trackOut = os.path.join(wellPath, chanName + "_tracks") if not os.path.exists(trackOut): os.makedirs(trackOut) # Create output file trackOut = os.path.join(trackOut, "track_" + str(tId) + ".csv") trackFile = open(trackOut, 'w') # Fetch the track feature from the feature model. header = '' for featName in fm.getTrackFeatureNames(): header += featName + ", " header = header[0:len(header) - 2] header += '\n' trackFile.write(header) features = '' for featName in fm.getTrackFeatureNames(): features += str(fm.getTrackFeature(tId, featName)) + ', ' features = features[0:len(features) - 2] features += '\n' trackFile.write(features) trackFile.write('\n') trackFile.close() trackDat[tId] = [ str(tId), str(fm.getTrackFeature(tId, 'TRACK_DURATION')), str(avgTotalIntensity), str(fm.getTrackFeature(tId, 'TRACK_START')), str(fm.getTrackFeature(tId, 'TRACK_STOP')) ] # Create output file trackOut = os.path.join(wellPath, chanName + "_trackSummary.csv") trackFile = open(trackOut, 'w') # Fetch the track feature from the feature model. trackFile.write( 'Track Id, Duration, Avg Total Intensity, Start Frame, Stop Frame \n' ) for track in trackDat: trackFile.write(','.join(trackDat[track]) + '\n') trackFile.close() trackOut = os.path.join(wellPath, chanName + "_trackModel.xml") trackFile = File(trackOut) writer = TmXmlWriter(trackFile, model.getLogger()) #writer.appendLog( logPanel.getTextContent() ); writer.appendModel(trackmate.getModel()) writer.appendSettings(trackmate.getSettings()) #writer.appendGUIState( controller.getGuimodel() ); writer.writeToFile() model.clearSpots(True) model.clearTracks(True) return trackDat
reader.readSettings(settings, detectorProvider, trackerProvider, spotAnalyzerProvider, edgeAnalyzerProvider, trackAnalyzerProvider) logger.log(str('\n\nSETTINGS:')) logger.log(str(settings)) # The settings object is also instantiated with the target image. # Note that the XML file only stores a link to the image. # If the link is not valid, the image will not be found. imp = settings.imp imp.show() # With this, we can overlay the model and the source image: displayer = HyperStackDisplayer(model, sm, imp) displayer.setDisplaySettings("TrackDisplaymode", 7) #Solo mostrar el Track Seleccionado. #Selecciona un spot de un id tm = model.getTrackModel() id = tm.trackIDs(True).iterator().next() spots = tm.trackSpots(id) edges = tm.trackEdges(id) sm.clearSelection() sm.selectTrack(spots, edges, 0) displayer = HyperStackDisplayer(model, sm, imp) displayer.setDisplaySettings("TrackDisplaymode", 6) #Solo mostrar el Track Seleccionado. displayer.render() # ============================================================================= # =============================================================================