def build_db(connection, filename): c = connection.cursor() create_db(c) with codecs.open(filename, 'r', encoding="utf-8") as f: s = BMGraphDBSink(connection) # bmgraph.logger.setLevel(logging.DEBUG) bmgraph_file.logger.setLevel(logging.INFO) bmgraph_file.read_file(f, s) connection.commit() logger.info("%i rows in the database." % node_count(c)) logger.info("%i node attributes in the database." % node_attribute_count(c)) logger.info("%i edge attributes in the database." % edge_attribute_count(c)) logger.info("%i edges in the database." % edge_count(c))
def simple_get(url): """ Attempts to get the content at `url` by making an HTTP GET request. If the content-type of response is some kind of HTML/XML, return the text content, otherwise return None. """ filename = "{0}.html".format(url.split("/").pop().lower()) filepath = abspath(join(dirname(__file__), "./cache", filename)) file_data = read_file(filepath) if file_data != None: return file_data try: print("Fetching: {0}...".format(url)) with closing(get(url, stream=True)) as resp: if is_good_response(resp): write_cache_file(filepath, resp.content) return resp.content else: return None except RequestException as e: log_error('Error during requests to {0} : {1}'.format(url, str(e))) return None
def get_station_bus_stops(self, station_name): # get the bus stop codes # get the interchange code (little more tricky because LTG does not provide it) bus_stop_codes = [] slugified_station_name = station_name.replace(' ', '-').lower() r = requests.get( f'https://landtransportguru.net/{slugified_station_name}-station/') if r.status_code == 200: soup = BeautifulSoup(r.content, 'lxml') table_cell_soup = soup.find_all('td') for cell_soup in table_cell_soup: # (1) Find bus stop codes. We need to go through all table cells and see if the first 5 digits are numbers try: # checking if the first 5 digits can be ints. If yes, they are the bus stop codes # just for safety, we'll also check that the "–" character is present int(cell_soup.text[0:5]) if "–" in cell_soup.text: stop_code = cell_soup.text[0:5] # Make sure not to add a None # Make sure not to add if it's already there if stop_code and stop_code not in bus_stop_codes: bus_stop_codes.append(stop_code) next except: pass # (2) Find if interchange a_soup = cell_soup.find('a') if a_soup and "interchange" in a_soup.text .lower(): bus_stop_name = a_soup.text .lower() .replace("interchange", "int").replace(" bus", "").replace( "temporary", "temp").replace("bukit", "bt") # bukit is hortened to bt in bus stop names # print(bus_stop_name) # go through temporary/all_stops_dict.json (or combined) and find the code matching the name all_bus_stops_dict = read_file('temp/bus', 'all_stops_dict.json') for bus_stop in all_bus_stops_dict.keys(): if bus_stop_name == all_bus_stops_dict[bus_stop]['name'].lower(): # match found :) stop_code = all_bus_stops_dict[bus_stop]['code'] if stop_code not in bus_stop_codes: bus_stop_codes.append(stop_code) return bus_stop_codes else: # return empty list if error return []
def main(target_dir, tenant): print_gather_dir_info(target_dir) for path in list_dir(target_dir, '.js'): original_content = read_file(path) replaced_content, number_of_replace = replace_tenant( original_content, tenant) if number_of_replace > 0: print_replace(path, number_of_replace) write_file(path, replaced_content)
def RecognizeSpeechAndRemoveFile(AUDIO_FILENAME): #print("Recognize and remove file", AUDIO_FILENAME) # reading audio audio = read_file(AUDIO_FILENAME) delete_file(AUDIO_FILENAME) # send to WIT.AI recognize(audio)
def RecognizeSpeechAndRemoveFile(AUDIO_FILENAME): # reading audio audio = read_file(AUDIO_FILENAME) # delete useless file because is already in "audio" variable delete_file(AUDIO_FILENAME) # send to WIT.AI recognize(audio) time.sleep(3)
def insert_stock_base(): path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) path = unicode(path, 'utf8') json_str = read_file(path + '/stocknum.json') stocks = json.loads(json_str)['hah'] sql = '' startTime = datetime.datetime.now() logging.info("拼装插入股票基础数据sql语句开始:" + str(startTime)) sql = LOCAL_SQL % ('stock', 'stockCode, stockName', '%s, %s') values = [] for i in xrange(0, len(stocks)): stock = stocks[i] temp = (stock['stockCode'], stock['stockName']) values.append(temp) pass endTime = datetime.datetime.now() logging.info("拼装插入股票基础数据结束:" + str(endTime) + ", 共耗时:" + str((endTime - startTime).seconds)) insert_many(sql, tuple(values)) pass
def send_request(file_name): # read file file_content = file.read_file(file_name) audio_data = encode_data(file_content) # construct and send request url = "http://%s:%s%s" % (host, port, path) body = {"audio_data": audio_data} raw_response = requests.post(url, data=json.dumps(body), headers=headers, timeout=180) # handle response json_response = None try: json_response = raw_response.json() except Exception as e: print("file [%s] error: " % file_name, e) if (json_response["success"]): return json_response["result"] else: print("file [%s] failed, message: %s, request_id: %s: " % (file_name, json_response["message"]["global"], json_response["request_id"]))
else: print "Usage: python generate.py -font <font name> -l <language> -s <size> -a <input alphabet directory>" exit() if (sys.argv[3] == "-l"): lang = sys.argv[4] else: print "Usage: python generate.py -font <font name> -l <language> -s <size> -a <input alphabet directory>" exit() if (sys.argv[5] == "-s"): font_size = sys.argv[6] else: print "Usage: python generate.py -font <font name> -l <language> -s <size> -a <input alphabet directory>" exit() if (sys.argv[7] == "-a"): alphabet_dir = sys.argv[8] else: print "Usage: python generate.py -font <font name> -l <language> -s <size> -a <input alphabet directory>" exit() font_string = font_name + " " + lang + " " + font_size #begin training draw(font_string, int(font_size), lang, file.read_file( alphabet_dir)) #reads all fonts in the directory font_dir and trains train.train(lang) #training ends
#Comment try: answer = 1 while answer < 3 and answer > 0: answer = int(input("What would you like to do? \n(1) Simple Calculator \n(2) Create / Edit / Read a File \n(3) Nothing \nAnswer: ")) if answer == 1: print("\nYou chose '1'.") num1 = float(input("First number: ")) num2 = float(input("Second number: ")) operator = input ("What to do with it: ") calculator.simple_calculator(num1,num2,operator) elif answer == 2: print("\nYou chose '2'.") option = input("Create, Edit, or Read a file: ") if option.lower() == "create": file.create_file() elif option.lower() == "edit": file.edit_file() elif option.lower() == "read": file.read_file() else: print("That is not an option.\n") else: print("\nYou chose '3' or a number that is out of range. Bye.") except: print("\nYou have entered an invalid answer. Bye.")
from sklearn.feature_extraction.text import TfidfTransformer from pprint import pprint from pymongo import MongoClient import operator import math import os import file folder_path = os.path.dirname(os.path.realpath(__file__)) + '/pos_terms' result = {} raw_datas = [] datas = [] for f in os.listdir(folder_path): path = os.path.join(folder_path, f) if os.path.isfile(path) and '.json' in path: raw_datas += file.read_file(path) for raw_data in raw_datas: concat = [] concat = ' '.join(raw_data) datas.append(concat) corpus = [] for data in raw_datas: corpus.append(' '.join(data)) vectorizer = CountVectorizer() x = vectorizer.fit_transform(corpus) word = vectorizer.get_feature_names() transformer = TfidfTransformer() tfidf = transformer.fit_transform(x) word = vectorizer.get_feature_names()
exit() if(sys.argv[3]=="-l"): lang=sys.argv[4] else: print "Usage: python generate.py -font <font name> -l <language> -s <size> -a <input alphabet directory>" exit() if(sys.argv[5]=="-s"): font_size=sys.argv[6] else: print "Usage: python generate.py -font <font name> -l <language> -s <size> -a <input alphabet directory>" exit() if(sys.argv[7]=="-a"): alphabet_dir=sys.argv[8] else: print "Usage: python generate.py -font <font name> -l <language> -s <size> -a <input alphabet directory>" exit() font_string=font_name+" "+lang+" "+font_size #begin training draw(font_string,int(font_size),lang,file.read_file(alphabet_dir))#reads all fonts in the directory font_dir and trains train.train(lang) #training ends
exit() if(sys.argv[3]=="-l"): lang=sys.argv[4] else: print "Usage: python generate.py -fd <font directory> -l <language> -a <input alphabet directory>" exit() if(sys.argv[5]=="-a"): alphabet_dir=sys.argv[6] else: print "Usage: python generate.py -fd <font directory> -l <language> -a <input alphabet directory>" exit() #begin training #font_dir="/usr/share/fonts/truetype/ttf-bengali-fonts/" for t in os.walk(font_dir): for f in t[2]: if(f.split('.')[1]=="ttf"): font_file=font_dir+f print font_file draw(lang,f,font_file,40,file.read_file(alphabet_dir))#reads all fonts in the directory font_dir and trains train.train(lang) #training ends
def all_encoding_stats(file_name): """output with default file_name: Test file: cyphesis_atlas_XML_2000-03-27_no_obj.log Msg count: 228 uncompressed gzip -9 bzip2 -9 XML 954.97 47.93 33.95 XML2_test 727.00 45.92 34.03 Packed 384.41 36.79 30.84 Bach_beta 478.61 39.11 31.35 Binary1_beta 380.54 38.58 32.26 Binary2_test 236.12 35.22 30.78 Test file: CyphesisClient_fromServerViewpoint2_no_obj.log Msg count: 716 uncompressed gzip -9 bzip2 -9 XML 832.77 36.76 23.82 XML2_test 632.11 35.03 23.94 Packed 284.41 28.88 23.20 Bach_beta 373.68 31.91 23.28 Binary1_beta 277.63 30.53 24.04 Binary2_test 156.22 28.31 23.62 Test file: cyphesis_atlas_Packed_2001-07-13.log Msg count: 4768 uncompressed gzip -9 bzip2 -9 XML 1250.59 27.39 14.17 XML2_test 910.63 23.97 13.20 Packed 405.12 17.34 12.67 Bach_beta 544.18 18.72 12.21 Binary1_beta 441.45 22.03 14.34 Binary2_test 260.30 19.02 13.23 """ print() print() print("Test file:",file_name) global all_msg xml_codec = codec.get_XML() #all_msg = xml_codec.decode(open(file_name).read()) all_msg = file.read_file(file_name) print("Msg count:",len(all_msg)) all_stats = [] #XML size all_stats.append(calculate_stats(all_msg,xml_codec)) #XML2 size all_stats.append(calculate_stats(all_msg,codec.get_XML2_test())) #Packed size all_stats.append(calculate_stats(all_msg,codec.get_Packed())) #Bach size all_stats.append(calculate_stats(all_msg,codec.get_Bach_beta())) #Binary1_beta size all_stats.append(calculate_stats(all_msg,codec.get_Binary1_beta())) #Binary2_test size all_stats.append(calculate_stats(all_msg,codec.get_Binary2_test())) ## for name in binary2.attribute_type_dict.keys(): ## print name ## binary2.discard_name = name ## all_stats.append(calculate_stats(all_msg,codec.get_Binary2_test())) ## all_stats[-1][0] = list(all_stats[-1][0]) ## all_stats[-1][0][0] = name ## all_stats.sort(lambda e1,e2:cmp(e1[2][2],e2[2][2])) print() filter_types = ("uncompressed", "gzip -9", "bzip2 -9") print(" %10s %10s %10s" % filter_types) for stat in all_stats: print("%-13s %10.2f %10.2f %10.2f" % ( stat[0][0], stat[0][2], stat[1][2], stat[2][2]))
def cam_setup(camidx=0, roi=None, flatf=None, darkf=None, maskshape='all', procd=32, usecam=True, outdir='./', verb=0): """ Setup IEEE1394 camera using Python's binding for OpenCV. Setup will be stored in global CAM_CFG dictionary for use by cam_getimage(). @param camidx Camera index @param roi Region of Interest to use, as (x, y, width, height) @param flatf Flatfield image to use [file] @param darkf Darkfield image to use [file] @param maskshape Shape for processing mask, 'circ' or 'all' @param procd Bitdepth to process images at (32 or 64) @param outdir Directory to store stuff to @param verb Verbosity """ global CAM_CFG if (verb & VERB_M > L_INFO): print "Setting up camera..." if (procd == 64): npdtype = np.float64 cvdtype = cv.IPL_DEPTH_64F else: npdtype = np.float32 cvdtype = cv.IPL_DEPTH_32F if (darkf and os.path.isfile(darkf)): if (verb & VERB_M > L_DEBG): print "Processing dark frames..." # Hard-link to used files for new cache newdarkf = pjoin(outdir, CAM_DARKFIELD) if (os.path.exists(newdarkf)): os.unlink(newdarkf) os.link(darkf, newdarkf) darkim = file.read_file(darkf).astype(npdtype) CAM_CFG['dark'] = cv.fromarray(darkim) if (flatf and os.path.isfile(flatf)): if (verb & VERB_M > L_DEBG): print "Processing flat frame(s)..." newflatf = pjoin(outdir, CAM_FLATFIELD) if (os.path.exists(newflatf)): os.unlink(newflatf) os.link(flatf, newflatf) flatim = file.read_file(flatf).astype(npdtype) CAM_CFG['flat'] = cv.fromarray(flatim) if (CAM_CFG.has_key('dark')): cv.Sub(CAM_CFG['flat'], CAM_CFG['dark'], CAM_CFG['flat']) if (verb & VERB_M > L_XNFO): print "Configuring camera..." if (not CAM_CFG.has_key('window')): CAM_CFG['window'] = 'cam_live' cv.NamedWindow(CAM_CFG['window'], cv.CV_WINDOW_AUTOSIZE) cv.NamedWindow("cam_histogram", cv.CV_WINDOW_AUTOSIZE) CAM_CFG['idx'] = camidx CAM_CFG['roi'] = roi if (usecam): CAM_CFG['handle'] = cv.CaptureFromCAM(camidx) #cv.GetCaptureProperty(CAM_CFG['handle'], cv.CV_CAP_PROP_FPS) cv.SetCaptureProperty(CAM_CFG['handle'], cv.CV_CAP_PROP_FPS, 60) else: CAM_CFG['handle'] = None if (roi): CAM_CFG['dshape'] = (roi[2], roi[3]) elif (usecam): # GetSize returns (width, h), NumPy arrays expect (height, w) rawframe = cv.QueryFrame(CAM_CFG['handle']) CAM_CFG['dshape'] = cv.GetSize(rawframe)[::-1] else: raise ValueError("Need ROI or camera to determine data shape.") CAM_CFG['frame'] = cv.CreateImage(CAM_CFG['dshape'][::-1], cvdtype, 1) if (maskshape == 'circ'): CAM_CFG['mask'] = im.mk_rad_mask(*CAM_CFG['dshape']) < 1 else: CAM_CFG['mask'] = np.ones(CAM_CFG['dshape']).astype(np.bool) CAM_CFG['imask'] = (CAM_CFG['mask'] == False) file.store_file(pjoin(outdir, CAM_APTMASK), CAM_CFG['mask'].astype(np.uint8), clobber=True) if (verb & VERB_M > L_INFO): print "Camera setup complete..." cam_getimage(show=True)
from post_details import post_details browser = webdriver.Chrome('chromedriver.exe') file = 'main.txt' username = '******' password = '******' url_page = 'https://www.instagram.com/tarbiate_jensi1/' #login(browser,username,password) go_to_page(browser, url_page) print("go_to_page") if post_of_page(browser, file): list_of_post = read_file('main.txt') lenght_of_list = int(len(list_of_post) / 3) for i in range(lenght_of_list): print("i= ", i) counter = 3 * i load_comments(browser, list_of_post[counter + 1]) post_details(browser, list_of_post[counter], list_of_post[counter + 1], list_of_post[counter + 2]) print("done") else: print("post of page is not find!")
tkn = tag[1].replace('[','').replace(']','').split('\',') if len(tkn) > 3: continue ltype = set() for t in tkn: # type-to-tag typ = t.replace('\'','').strip() ltag = type2tag.setdefault(typ, set()) ltag.add(ptag) type2tag[typ] = ltag # tag-to-type ltype.add (typ) tag2type[ptag] = ltype # tag - group sgroup = ufile.read_file ('app/resources/semantic-groups.txt') if sgroup is None: log.error ('impossible to load the semantic categories - interrupting') sys.exit() group2tag = {} group2type = {} tag2group = {} for sg in sgroup: tkn = sg.strip().split('|') grp = tkn[0].strip() typ = tkn[2].strip().lower() if typ not in type2tag: continue # group-to-tag if typ in type2tag: ltag = group2tag.setdefault (grp, set())
def cam_setup(camidx=0, roi=None, flatf=None, darkf=None, maskshape='all', procd=32, usecam=True, outdir='./', verb=0): """ Setup IEEE1394 camera using Python's binding for OpenCV. Setup will be stored in global CAM_CFG dictionary for use by cam_getimage(). @param camidx Camera index @param roi Region of Interest to use, as (x, y, width, height) @param flatf Flatfield image to use [file] @param darkf Darkfield image to use [file] @param maskshape Shape for processing mask, 'circ' or 'all' @param procd Bitdepth to process images at (32 or 64) @param outdir Directory to store stuff to @param verb Verbosity """ global CAM_CFG if (verb&VERB_M > L_INFO): print "Setting up camera..." if (procd == 64): npdtype = np.float64 cvdtype = cv.IPL_DEPTH_64F else: npdtype = np.float32 cvdtype = cv.IPL_DEPTH_32F if (darkf and os.path.isfile(darkf)): if (verb&VERB_M > L_DEBG): print "Processing dark frames..." # Hard-link to used files for new cache newdarkf = pjoin(outdir, CAM_DARKFIELD) if (os.path.exists(newdarkf)): os.unlink(newdarkf) os.link(darkf, newdarkf) darkim = file.read_file(darkf).astype(npdtype) CAM_CFG['dark'] = cv.fromarray(darkim) if (flatf and os.path.isfile(flatf)): if (verb&VERB_M > L_DEBG): print "Processing flat frame(s)..." newflatf = pjoin(outdir, CAM_FLATFIELD) if (os.path.exists(newflatf)): os.unlink(newflatf) os.link(flatf, newflatf) flatim = file.read_file(flatf).astype(npdtype) CAM_CFG['flat'] = cv.fromarray(flatim) if (CAM_CFG.has_key('dark')): cv.Sub(CAM_CFG['flat'], CAM_CFG['dark'], CAM_CFG['flat']) if (verb&VERB_M > L_XNFO): print "Configuring camera..." if (not CAM_CFG.has_key('window')): CAM_CFG['window'] = 'cam_live' cv.NamedWindow(CAM_CFG['window'], cv.CV_WINDOW_AUTOSIZE) cv.NamedWindow("cam_histogram", cv.CV_WINDOW_AUTOSIZE) CAM_CFG['idx'] = camidx CAM_CFG['roi'] = roi if (usecam): CAM_CFG['handle'] = cv.CaptureFromCAM(camidx) #cv.GetCaptureProperty(CAM_CFG['handle'], cv.CV_CAP_PROP_FPS) cv.SetCaptureProperty(CAM_CFG['handle'], cv.CV_CAP_PROP_FPS, 60) else: CAM_CFG['handle'] = None if (roi): CAM_CFG['dshape'] = (roi[2], roi[3]) elif (usecam): # GetSize returns (width, h), NumPy arrays expect (height, w) rawframe = cv.QueryFrame(CAM_CFG['handle']) CAM_CFG['dshape'] = cv.GetSize(rawframe)[::-1] else: raise ValueError("Need ROI or camera to determine data shape.") CAM_CFG['frame'] = cv.CreateImage(CAM_CFG['dshape'][::-1], cvdtype, 1) if (maskshape == 'circ'): CAM_CFG['mask'] = im.mk_rad_mask(*CAM_CFG['dshape']) < 1 else: CAM_CFG['mask'] = np.ones(CAM_CFG['dshape']).astype(np.bool) CAM_CFG['imask'] = (CAM_CFG['mask'] == False) file.store_file(pjoin(outdir, CAM_APTMASK), CAM_CFG['mask'].astype(np.uint8), clobber=True) if (verb&VERB_M > L_INFO): print "Camera setup complete..." cam_getimage(show=True)
#!/bin/python import sys from OutWritter import OutWritter from file import read_file from PySide2.QtWidgets import QApplication from PySide2.QtQuick import QQuickView from PySide2.QtCore import QUrl, QTimer app = QApplication([]) writter = OutWritter() view = QQuickView() url = QUrl("components/list_view.qml") view.setResizeMode(QQuickView.SizeRootObjectToView) view.setSource(url) timer = QTimer() timer.timeout.connect(lambda: None) timer.start(100) list = view.rootObject() list.setProperty('entries', read_file("./config/bookmarks")) context = view.rootContext() context.setContextProperty("out", writter) view.show() sys.exit(app.exec_())
def all_encoding_stats(file_name): """output with default file_name: Test file: cyphesis_atlas_XML_2000-03-27_no_obj.log Msg count: 228 uncompressed gzip -9 bzip2 -9 XML 954.97 47.93 33.95 XML2_test 727.00 45.92 34.03 Packed 384.41 36.79 30.84 Bach_beta 478.61 39.11 31.35 Binary1_beta 380.54 38.58 32.26 Binary2_test 236.12 35.22 30.78 Test file: CyphesisClient_fromServerViewpoint2_no_obj.log Msg count: 716 uncompressed gzip -9 bzip2 -9 XML 832.77 36.76 23.82 XML2_test 632.11 35.03 23.94 Packed 284.41 28.88 23.20 Bach_beta 373.68 31.91 23.28 Binary1_beta 277.63 30.53 24.04 Binary2_test 156.22 28.31 23.62 Test file: cyphesis_atlas_Packed_2001-07-13.log Msg count: 4768 uncompressed gzip -9 bzip2 -9 XML 1250.59 27.39 14.17 XML2_test 910.63 23.97 13.20 Packed 405.12 17.34 12.67 Bach_beta 544.18 18.72 12.21 Binary1_beta 441.45 22.03 14.34 Binary2_test 260.30 19.02 13.23 """ print print print "Test file:",file_name global all_msg xml_codec = codec.get_XML() #all_msg = xml_codec.decode(open(file_name).read()) all_msg = file.read_file(file_name) print "Msg count:",len(all_msg) all_stats = [] #XML size all_stats.append(calculate_stats(all_msg,xml_codec)) #XML2 size all_stats.append(calculate_stats(all_msg,codec.get_XML2_test())) #Packed size all_stats.append(calculate_stats(all_msg,codec.get_Packed())) #Bach size all_stats.append(calculate_stats(all_msg,codec.get_Bach_beta())) #Binary1_beta size all_stats.append(calculate_stats(all_msg,codec.get_Binary1_beta())) #Binary2_test size all_stats.append(calculate_stats(all_msg,codec.get_Binary2_test())) ## for name in binary2.attribute_type_dict.keys(): ## print name ## binary2.discard_name = name ## all_stats.append(calculate_stats(all_msg,codec.get_Binary2_test())) ## all_stats[-1][0] = list(all_stats[-1][0]) ## all_stats[-1][0][0] = name ## all_stats.sort(lambda e1,e2:cmp(e1[2][2],e2[2][2])) print filter_types = ("uncompressed", "gzip -9", "bzip2 -9") print " %10s %10s %10s" % filter_types for stat in all_stats: print "%-13s %10.2f %10.2f %10.2f" % ( stat[0][0], stat[0][2], stat[1][2], stat[2][2])
tkn = tag[1].replace('[', '').replace(']', '').split('\',') if len(tkn) > 3: continue ltype = set() for t in tkn: # type-to-tag typ = t.replace('\'', '').strip() ltag = type2tag.setdefault(typ, set()) ltag.add(ptag) type2tag[typ] = ltag # tag-to-type ltype.add(typ) tag2type[ptag] = ltype # tag - group sgroup = ufile.read_file('app/resources/semantic-groups.txt') if sgroup is None: log.error('impossible to load the semantic categories - interrupting') sys.exit() group2tag = {} group2type = {} tag2group = {} for sg in sgroup: tkn = sg.strip().split('|') grp = tkn[0].strip() typ = tkn[2].strip().lower() if typ not in type2tag: continue # group-to-tag if typ in type2tag: ltag = group2tag.setdefault(grp, set())
def test_read_file(self): self.assertEqual('Hogehoge\nFoobar\n', file.read_file("../file/read_file.txt"))
import file import json a = file.read_file() b = file.add_json(a, 'test')
for v in votes: votesPerc.append(v / X) votesMissing = [] sumDif = 0 for vp in votesPerc: dif = votesPerc[indMax] - vp votesMissing.append(dif) sumDif += dif return maxEle, sumDif, votesMissing if __name__ == '__main__': lines = file.read_file('A-large.in') i = 0 write = [] for line in lines: if i != 0: line = line.split(" ") N = line[0] votes1 = line[1:] votes = [] for j in votes1: votes.append(float(j)) X = sum(votes) maxEle, sumDif, votesMissing = greaterThan1(votes, X) if sumDif <= 1: