def get_user(): #if no user file - create one using email - for user setup tmp = fm.read_file("data/user.txt") if tmp != None: return tmp else: print("\nUser File Not Found: Please use aeneas to init a user file") exit(0)
def get_training_data(): file_name = "data/scipio_training_data.txt" data = fm.read_file(file_name) data_clean = [] #vet data for line in data: data_clean.append(line.strip('\n').split(':')) return data_clean
def check_progress(): tmp = fm.read_file("data/progress.txt") if tmp != None: return tmp else: print("Progress File Not Found: Creating One...") fm.write_file("data/progress.txt", '', "w+") print("Progress File Created!") return []
def get_user(): tmp = fm.read_file("data/user.txt") if tmp != None: return tmp else: print("User File Not Found: Creating One...") user_email = input('User Email: ') + "\n" print("Retrieving User Token...") token = json.dumps(get_token(user_email)) print("Token Collected!") fm.write_file("data/user.txt", [user_email, token], 'w') return [user_email, token]
def load_weights(file_name): #default location for data files data = fm.read_file('data/' + str(file_name)) if data == None: #alt location data = fm.read_file(str(file_name)) temp = [] for item in data: temp.append([ float(x) for x in str(item.split(':')[1]).replace('\n', '').replace( '[', '').replace(']', '').split(', ') ]) i = 0 for perceptron in perceptrons: perceptron.weight = temp[i] i = i + 1 print("Weights loaded!") return
def print_title(): lines = fm.read_file("titles/aeneas_title.txt") for line in lines: print(line.strip("\n")) print("\t\t\t\t\t\t\t<3 valtyr")
def execute(): counter = 0 streak = 0 top_streak = 0 time_start = time.time() while True: (targets, blob) = request() #set all outputs for percep in perceptrons: percep.input = compute_frequency(blob, percep.chunk) percep.get_output() count = {} for percep in perceptrons: if percep.output == 1 and targets.__contains__(percep.label): if percep.label in count.keys(): count[percep.label] = count[percep.label] + 1 else: count[percep.label] = 1 try: guess = max(count, key=count.get) #if confidence low ie low fire rate .. raise and pull net_conf = int(count.get(guess)) if net_conf <= confidence: print('low answer confidence...low fire[' + str(int(count.get(guess))) + "]") raise ('') print("Guess:\t" + guess + '\tConfidence: ' + str(net_conf)) response = solve(guess) correct_resp = response.json()['correct'] target = response.json()['target'] accuracy = response.json()['accuracy'] try: hash_resp = response.json()['hash'] print("HASH COLLECTED!") time_stop = time.time() time_total = time_stop - time_start save_hash("Streak: " + str(fm.read_file('data/top_streak.txt')) + "Correct: " + str(correct_resp) + "\tAccuracy: " + str(accuracy) + "\tTotal Time: " + str(time_total) + "\nHash: " + hash_resp + "\n") # ask_hash(email) except: hash_resp = "None" print('Answer: ' + target + '\tNumber: ' + str(correct_resp) + "\tAccuracy: " + str(accuracy)) if (target == guess): streak = streak + 1 # if streak > top_streak: # top_streak=streak print("streak: " + str(streak) + '\n') else: if int(fm.read_file('data/top_streak.txt')) < streak: fm.write_file('data/top_streak.txt', top_streak, 'w+') print('streak reset...\n') streak = 0 for percep in perceptrons: percep.adjust_weight(target) percep.mod = random.choice([0, 1]) counter = counter + 1 save_training_data(target, blob) #save weights every 10 cycles if counter % 10 == 0: print("Weights saved!") save_weights() except: pass return
def print_title(): lines = fm.read_file("titles/scipio_title.txt") for line in lines: print(line.strip('\n')) print(" <3 valtyr") return