def initialize_images(self, mode=None, current_image_path=None):
     self._all_images: List = file_walker.walk(mode)
     self._current_index = 0
     self._shuffle_start_index = 0
     if current_image_path:
         self._current_index = self.get_index_from_image_path(
             current_image_path)
         self._shuffle_start_index = self._current_index
     # self.image_shuffle()
     self._set_image(self._current_index)
示例#2
0
 def initialize_images(self,
                       mode=None,
                       current_image_path=None,
                       to_sort: bool = False,
                       reverse_sort: bool = False):
     self._all_images: List = file_walker.walk(mode,
                                               is_sorted=to_sort,
                                               reverse_sort=reverse_sort)
     self._current_index = 0
     self._shuffle_start_index = 0
     if current_image_path:
         self._current_index = self.get_index_from_image_path(
             current_image_path)
         self._shuffle_start_index = self._current_index
     # self.image_shuffle()
     self._set_image(self._current_index)
示例#3
0

def backup_image(old_image_path, backup_path):
    command = "mv '{old}' {backup_path}".format(old=old_image_path,
                                                backup_path=backup_path)
    print(command)
    subprocess.check_output(shlex.split(command))


# def compress_first_10_images():

if __name__ == '__main__':
    hard_limit = 5491520
    # 5491520 bytes = 5240 KB = 5MB

    image_paths: List = walker.walk(increasing_size_sort=True)
    new_suffix = "_comp_la"
    new_ext = '.jpg'
    for image_path in image_paths:
        if new_suffix in image_path:
            continue
        if os.path.getsize(image_path) < hard_limit:
            print(image_path)
            print("image size > hard limit; stopping")
            break
        old_image_path: str = image_path
        new_image_path = old_image_path.replace(
            os.path.splitext(old_image_path)[1], new_suffix + new_ext)
        compress_image(old_image_path, new_image_path)
        backup_image(old_image_path)
        # break
    def __init__(self,
                 data_list=["AFEW"],
                 dir_gt=None,
                 onlyFace=True,
                 image_size=224,
                 transform=None,
                 useIT=False,
                 augment=False,
                 step=1,
                 split=False,
                 nSplit=5,
                 listSplit=[0, 1, 2, 3, 4],
                 wHeatmap=False,
                 isVideo=False,
                 seqLength=None):

        self.seq_length = seqLength
        self.isVideo = isVideo

        self.transform = transform
        self.onlyFace = onlyFace
        self.augment = augment
        self.wHeatmap = wHeatmap

        self.imageSize = image_size
        self.imageHeight = image_size
        self.imageWidth = image_size
        self.useIT = useIT
        self.curDir = "/homedtic/gulloa/ValenceArousal/images/"

        list_gt = []
        list_labels_t = []
        list_labels_tE = []

        counter_image = 0
        annotL_name = 'annot'
        annotE_name = 'annot2'

        if dir_gt is not None:
            annot_name = dir_gt

        for data in data_list:
            print(("Opening " + data))
            for f in file_walker.walk(self.curDir + data + "/"):
                if f.isDirectory:  # Check if object is directory
                    #print((f.name, f.full_path)) # Name is without extension
                    for sub_f in f.walk():
                        if sub_f.isDirectory:  # Check if object is directory
                            #AFEWVA
                            '''for sub_2_f in sub_f.walk():
                                if sub_2_f.isDirectory:
                                    list_dta = []
                                    #print(sub_f.name)
                                    if(sub_2_f.name == annotL_name) : #If that's annot, add to labels_t

                                        for sub_sub_f in sub_2_f.walk(): #this is the data
                                            if(".npy" not in sub_sub_f.full_path):
                                                list_dta.append(sub_sub_f.full_path)
                                        list_labels_t.append(sorted(list_dta))

                                    elif(sub_2_f.name == annotE_name) : #If that's annot, add to labels_t

                                        for sub_sub_f in sub_2_f.walk(): #this is the data
                                            if(".npy" not in sub_sub_f.full_path):
                                                list_dta.append(sub_sub_f.full_path)
                                        list_labels_tE.append(sorted(list_dta))

                                    elif(sub_2_f.name == 'img'): #Else it is the image
                                        for sub_sub_f in sub_2_f.walk(): #this is the data
                                            if(".npy" not in sub_sub_f.full_path):
                                                list_dta.append(sub_sub_f.full_path)
                                        list_gt.append(sorted(list_dta))
                                        counter_image+=len(list_dta)'''

                            #SEMAINE
                            list_dta = []

                            #print(sub_f.name)
                            if (sub_f.name == annotL_name
                                ):  #If that's annot, add to labels_t

                                for sub_sub_f in sub_f.walk(
                                ):  #this is the data
                                    if (".npy" not in sub_sub_f.full_path):
                                        list_dta.append(sub_sub_f.full_path)
                                list_labels_t.append(sorted(list_dta))

                            elif (sub_f.name == annotE_name
                                  ):  #If that's annot, add to labels_t

                                for sub_sub_f in sub_f.walk(
                                ):  #this is the data
                                    if (".npy" not in sub_sub_f.full_path):
                                        list_dta.append(sub_sub_f.full_path)
                                list_labels_tE.append(sorted(list_dta))

                            elif (sub_f.name == 'img'):  #Else it is the image

                                for sub_sub_f in sub_f.walk(
                                ):  #this is the data
                                    if (".npy" not in sub_sub_f.full_path):
                                        list_dta.append(sub_sub_f.full_path)
                                list_gt.append(sorted(list_dta))
                                counter_image += len(list_dta)

        self.length = counter_image
        print("Now opening keylabels")

        list_labelsN = []
        list_labelsEN = []

        list_labels = []
        list_labelsE = []

        for ix in range(len(
                list_labels_t)):  #lbl,lble in (list_labels_t,list_labels_tE) :
            lbl_68 = []  #Per folder
            lbl_2 = []  #Per folder

            lbl_n68 = []  #Per folder
            lbl_n2 = []  #Per folder
            for jx in range(len(list_labels_t[ix])):  #lbl_sub in lbl :

                lbl_sub = list_labels_t[ix][jx]
                if ('pts' in lbl_sub):
                    x = []
                    #print(lbl_sub)
                    with open(lbl_sub) as file:
                        data2 = [re.split(r'\t+', l.strip()) for l in file]
                    for i in range(len(data2)):
                        if (i not in [0, 1, 2, len(data2) - 1]):
                            x.append([float(j) for j in data2[i][0].split()])
                    lbl_68.append(np.array(x).flatten('F'))  #1 record
                    lbl_n68.append(lbl_sub)

                lbl_subE = list_labels_tE[ix][jx]
                if ('aro' in lbl_subE):
                    x = []
                    #print(lbl_sub)
                    with open(lbl_subE) as file:
                        data2 = [re.split(r'\t+', l.strip()) for l in file]
                    for i in range(len(data2)):
                        x.append([float(j) for j in data2[i][0].split()])
                    lbl_2.append(np.array(x).flatten('F'))
                    lbl_n2.append(lbl_sub)

            list_labelsN.append(lbl_n68)
            list_labelsEN.append(lbl_n2)

            list_labels.append(lbl_68)
            list_labelsE.append(lbl_2)

        t_l_imgs = []
        t_l_gt = []
        t_l_gtE = []

        t_list_gt_names = []
        t_list_gtE_names = []

        for i in range(0, len(list_gt)):  #For each dataset

            list_images = []
            list_gt_names = []
            list_gtE_names = []
            indexer = 0

            list_ground_truth = np.zeros([len(list_gt[i]), 136])
            list_ground_truthE = np.zeros([len(list_gt[i]), 2])

            for j in range(
                    0, len(list_gt[i]), step
            ):  #for number of data #n_skip is usefull for video data
                list_images.append(list_gt[i][j])

                list_gt_names.append(list_labelsN[i][j])
                list_gtE_names.append(list_labelsEN[i][j])

                list_ground_truth[indexer] = np.array(
                    list_labels[i][j]).flatten('F')
                list_ground_truthE[indexer] = np.array(
                    list_labelsE[i][j]).flatten('F')
                indexer += 1

            t_l_imgs.append(list_images)
            t_l_gt.append(list_ground_truth)
            t_l_gtE.append(list_ground_truthE)

            t_list_gt_names.append(list_gt_names)
            t_list_gtE_names.append(list_gtE_names)

        self.l_imgs = []
        self.l_gt = []
        self.l_gtE = []

        self.list_gt_names = []
        self.list_gtE_names = []

        if split:

            indexer = 0

            self.l_gt = []
            self.l_gtE = []

            totalData = len(t_l_imgs)
            perSplit = int(truediv(totalData, nSplit))
            for x in listSplit:
                print('split : ', x)
                begin = x * perSplit
                if x == nSplit - 1:
                    end = begin + (totalData - begin)
                else:
                    end = begin + perSplit
                print(begin, end, totalData)

                for i in range(begin, end):
                    for j in range(len(t_l_imgs[i])):
                        #print('append ',t_l_imgs[i][j])
                        self.l_imgs.append(t_l_imgs[i][j])
                        self.l_gt.append(t_l_gt[i][j])
                        self.l_gtE.append(t_l_gtE[i][j])

                        self.list_gt_names.append(t_list_gt_names[i][j])
                        self.list_gtE_names.append(t_list_gtE_names[i][j])
                        indexer += 1

                print(len(self.l_imgs))

            self.l_gt = np.asarray(self.l_gt)
            self.l_gtE = np.asarray(self.l_gtE)
        else:

            self.l_gt = np.zeros([counter_image, 136])
            self.l_gtE = np.zeros([counter_image, 2])
            indexer = 0

            for i in range(len(t_l_imgs)):
                for j in range(len(t_l_imgs[i])):
                    self.l_imgs.append(t_l_imgs[i][j])
                    print(i, j, '-', len(t_l_imgs[i]))
                    self.l_gt[indexer] = t_l_gt[i][j]
                    self.l_gtE[indexer] = t_l_gtE[i][j]

                    self.list_gt_names.append(t_list_gt_names[i][j])
                    self.list_gtE_names.append(t_list_gtE_names[i][j])
                    indexer += 1

        print('limgs : ', len(self.l_imgs))
    def __init__(self,
                 data_list=["AFEW"],
                 dir_gt=None,
                 onlyFace=True,
                 image_size=224,
                 transform=None,
                 useIT=False,
                 augment=False,
                 step=1,
                 split=False,
                 nSplit=5,
                 listSplit=[0, 1, 2, 3, 4],
                 wHeatmap=False,
                 isVideo=False,
                 seqLength=None):

        self.seq_length = seqLength
        self.isVideo = isVideo

        self.transform = transform
        self.onlyFace = onlyFace
        self.augment = augment
        self.wHeatmap = wHeatmap

        self.imageSize = image_size
        self.imageHeight = image_size
        self.imageWidth = image_size
        self.useIT = useIT
        self.curDir = "/homedtic/gulloa/ValenceArousal/images/"

        list_gt = []
        list_labels_t = []
        list_labels_tE = []

        counter_image = 0
        annotL_name = 'annot'
        annotE_name = 'annot2'

        if dir_gt is not None:
            annot_name = dir_gt

        for data in data_list:
            print(("Opening " + data))
            for f in file_walker.walk(self.curDir + data + "/"):
                if f.isDirectory:  # Check if object is directory
                    #print((f.name, f.full_path)) # Name is without extension
                    for sub_f in f.walk():
                        if sub_f.isDirectory:  # Check if object is directory
                            #AFEWVA
                            for sub_2_f in sub_f.walk():
                                if sub_2_f.isDirectory:
                                    list_dta = []
                                    #print(sub_f.name)
                                    if (sub_2_f.name == annotL_name
                                        ):  #If that's annot, add to labels_t

                                        for sub_sub_f in sub_2_f.walk(
                                        ):  #this is the data
                                            if (".npy" not in
                                                    sub_sub_f.full_path):
                                                list_dta.append(
                                                    sub_sub_f.full_path)
                                        list_labels_t.append(sorted(list_dta))

                                    elif (sub_2_f.name == annotE_name
                                          ):  #If that's annot, add to labels_t

                                        for sub_sub_f in sub_2_f.walk(
                                        ):  #this is the data
                                            if (".npy" not in
                                                    sub_sub_f.full_path):
                                                list_dta.append(
                                                    sub_sub_f.full_path)
                                        list_labels_tE.append(sorted(list_dta))

                                    elif (sub_2_f.name == 'img'
                                          ):  #Else it is the image
                                        for sub_sub_f in sub_2_f.walk(
                                        ):  #this is the data
                                            if (".npy" not in
                                                    sub_sub_f.full_path):
                                                list_dta.append(
                                                    sub_sub_f.full_path)
                                        list_gt.append(sorted(list_dta))
                                        counter_image += len(list_dta)

                            #SEMAINE
                            '''list_dta = []

                            #print(sub_f.name)
                            if(sub_f.name == annotL_name) : #If that's annot, add to labels_t

                                for sub_sub_f in sub_f.walk(): #this is the data
                                    if(".npy" not in sub_sub_f.full_path):
                                        list_dta.append(sub_sub_f.full_path)
                                list_labels_t.append(sorted(list_dta))

                            elif(sub_f.name == annotE_name) : #If that's annot, add to labels_t

                                for sub_sub_f in sub_f.walk(): #this is the data
                                    if(".npy" not in sub_sub_f.full_path):
                                        list_dta.append(sub_sub_f.full_path)
                                list_labels_tE.append(sorted(list_dta))

                            elif(sub_f.name == 'img'): #Else it is the image

                                for sub_sub_f in sub_f.walk(): #this is the data
                                    if(".npy" not in sub_sub_f.full_path):
                                        list_dta.append(sub_sub_f.full_path)
                                list_gt.append(sorted(list_dta))
                                counter_image+=len(list_dta)'''

        self.length = counter_image
        print("Now opening keylabels")

        list_labelsN = []
        list_labelsEN = []

        list_labels = []
        list_labelsE = []

        for ix in range(len(
                list_labels_t)):  #lbl,lble in (list_labels_t,list_labels_tE) :
            lbl_68 = []  #Per folder
            lbl_2 = []  #Per folder

            lbl_n68 = []  #Per folder
            lbl_n2 = []  #Per folder
            for jx in range(len(list_labels_t[ix])):  #lbl_sub in lbl :

                #print(os.path.basename(list_gt[ix][jx]))
                #print(os.path.basename(list_labels_t[ix][jx]))
                #print(os.path.basename(list_labels_tE[ix][jx]))

                lbl_sub = list_labels_t[ix][jx]
                if ('pts' in lbl_sub):
                    x = []
                    #print(lbl_sub)
                    with open(lbl_sub) as file:
                        data2 = [re.split(r'\t+', l.strip()) for l in file]
                    for i in range(len(data2)):
                        if (i not in [0, 1, 2, len(data2) - 1]):
                            x.append([float(j) for j in data2[i][0].split()])
                    lbl_68.append(np.array(x).flatten('F'))  #1 record
                    lbl_n68.append(lbl_sub)

                lbl_subE = list_labels_tE[ix][jx]
                if ('aro' in lbl_subE):
                    x = []
                    #print(lbl_sub)
                    with open(lbl_subE) as file:
                        data2 = [re.split(r'\t+', l.strip()) for l in file]
                    for i in range(len(data2)):
                        x.append([float(j) for j in data2[i][0].split()])
                    lbl_2.append(np.array(x).flatten('F'))
                    lbl_n2.append(lbl_sub)

            list_labelsN.append(lbl_n68)
            list_labelsEN.append(lbl_n2)

            list_labels.append(lbl_68)
            list_labelsE.append(lbl_2)
        '''for lbl in list_labels_t :
            lbl_68 = [] #Per folder
            for lbl_sub in lbl :
                #print(lbl_sub)
                if ('pts' in lbl_sub) :
                    x = []
                    #print(lbl_sub)
                    with open(lbl_sub) as file:
                        data2 = [re.split(r'\t+',l.strip()) for l in file]
                    for i in range(len(data2)) :
                        if(i not in [0,1,2,len(data2)-1]):
                            x.append([ float(j) for j in data2[i][0].split()] )
                    lbl_68.append(np.array(x).flatten('F')) #1 record
            list_labels.append(lbl_68)

        list_labelsE = []
        for lbl in list_labels_tE :
            lbl_2 = [] #Per folder
            for lbl_sub in lbl :
                #print(lbl_sub)
                if ('aro' in lbl_sub) :
                    x = []
                    #print(lbl_sub)
                    with open(lbl_sub) as file:
                        data2 = [re.split(r'\t+',l.strip()) for l in file]
                    for i in range(len(data2)) :
                        x.append([ float(j) for j in data2[i][0].split()] )
                    lbl_2.append(np.array(x).flatten('F')) #1 record
            list_labelsE.append(lbl_2)'''
        '''print(len(list_labelsN[0]))
        print(len(list_labelsEN[0]))
        print(len(list_labels[0]))
        print(len(list_labelsE[0]))'''

        t_l_imgs = []
        t_l_gt = []
        t_l_gtE = []

        t_list_gt_names = []
        t_list_gtE_names = []

        if not self.isVideo:
            #Flatten it to one list
            for i in range(0, len(list_gt)):  #For each dataset

                list_images = []
                list_gt_names = []
                list_gtE_names = []
                indexer = 0

                list_ground_truth = np.zeros([len(list_gt[i]), 136])
                list_ground_truthE = np.zeros([len(list_gt[i]), 2])

                for j in range(
                        0, len(list_gt[i]), step
                ):  #for number of data #n_skip is usefull for video data
                    list_images.append(list_gt[i][j])

                    list_gt_names.append(list_labelsN[i][j])
                    list_gtE_names.append(list_labelsEN[i][j])

                    list_ground_truth[indexer] = np.array(
                        list_labels[i][j]).flatten('F')
                    list_ground_truthE[indexer] = np.array(
                        list_labelsE[i][j]).flatten('F')
                    indexer += 1

                t_l_imgs.append(list_images)
                t_l_gt.append(list_ground_truth)
                t_l_gtE.append(list_ground_truthE)

                t_list_gt_names.append(list_gt_names)
                t_list_gtE_names.append(list_gtE_names)

        else:
            if self.seq_length is None:
                list_ground_truth = np.zeros([
                    int(counter_image / (self.seq_length * step)),
                    self.seq_length, 136
                ])
                indexer = 0

                for i in range(0, len(list_gt)):  #For each dataset
                    counter = 0
                    for j in range(
                            0, int(len(list_gt[i]) /
                                   (self.seq_length *
                                    step))):  #for number of data/batchsize

                        temp = []
                        temp2 = np.zeros([self.seq_length, 136])
                        i_temp = 0

                        for z in range(counter,
                                       counter + (self.seq_length * step),
                                       step):  #1 to seq_size
                            temp.append(list_gt[i][z])
                            temp2[i_temp] = list_labels[i][z]
                            i_temp += 1

                        list_images.append(temp)
                        list_ground_truth[indexer] = temp2

                        indexer += 1
                        counter += self.seq_length * step
                        #print counter
                self.l_imgs = list_images
                self.l_gt = list_ground_truth
            else:
                counter_seq = 0

                for i in range(0, len(list_gt)):  #For each dataset

                    indexer = 0
                    list_gt_names = []
                    list_gtE_names = []

                    list_ground_truth = np.zeros([
                        int(len(list_gt[i]) / (self.seq_length * step)),
                        self.seq_length, 136
                    ])  #np.zeros([counter_image,136])
                    list_ground_truthE = np.zeros([
                        int(len(list_gt[i]) / (self.seq_length * step)),
                        self.seq_length, 2
                    ])  #np.zeros([counter_image,2])

                    counter = 0
                    list_images = []

                    for j in range(
                            0, int(len(list_gt[i]) /
                                   (self.seq_length *
                                    step))):  #for number of data/batchsize
                        tmpn68 = []
                        tmpn2 = []

                        temp = []
                        temp2 = np.zeros([self.seq_length, 136])
                        temp3 = np.zeros([self.seq_length, 2])
                        i_temp = 0

                        for z in range(counter,
                                       counter + (self.seq_length * step),
                                       step):  #1 to seq_size
                            temp.append(list_gt[i][z])
                            temp2[i_temp] = list_labels[i][z].flatten('F')
                            temp3[i_temp] = list_labelsE[i][z].flatten('F')

                            tmpn68.append(list_labelsN[i][z])
                            tmpn2.append(list_labelsEN[i][z])

                            i_temp += 1
                            counter_seq += 1

                        list_images.append(temp)
                        list_ground_truth[indexer] = temp2
                        list_ground_truthE[indexer] = temp3

                        list_gt_names.append(tmpn68)
                        list_gtE_names.append(tmpn2)

                        indexer += 1
                        counter += self.seq_length * step
                        #print counter

                    t_l_imgs.append(list_images)
                    t_l_gt.append(list_ground_truth)
                    t_l_gtE.append(list_ground_truthE)

                    t_list_gt_names.append(list_gt_names)
                    t_list_gtE_names.append(list_gtE_names)
        '''print('length : ',len(t_l_imgs)) #Folder
        print('lengt2 : ',len(t_l_imgs[0])) #all/seq
        print('lengt3 : ',len(t_l_imgs[0][0])) #seq
        print('length4 : ',len(t_l_imgs[0][0][0]))'''

        #[folder, all/seq,seq]

        self.l_imgs = []
        self.l_gt = []
        self.l_gtE = []

        self.list_gt_names = []
        self.list_gtE_names = []

        #print('cimage : ',counter_image)

        if split:
            '''print('splitting')
            self.l_imgs = []
            self.l_gt = []
            self.l_gtE = []

            totalData = len(list_images)
            perSplit = int(truediv(totalData, nSplit))
            for x in listSplit :
                print('split : ',x)
                begin = x*perSplit
                if x == nSplit-1 :
                    end = begin + (totalData - begin)
                else :
                    end = begin+perSplit
                print(begin,end,totalData)
                for x2 in range(begin,end) :
                    #print(x2,totalData)
                    self.l_imgs.append(list_images[x2])
                    self.l_gt.append(list_ground_truth[x2])
                    self.l_gtE.append(list_ground_truthE[x2])'''
            indexer = 0

            self.l_gt = []
            self.l_gtE = []
            '''else :
                self.l_gt = np.zeros([counter_seq,self.seq_length,136])
                self.l_gtE = np.zeros([counter_seq,self.seq_length,2])'''

            totalData = len(t_l_imgs)
            perSplit = int(truediv(totalData, nSplit))
            for x in listSplit:
                print('split : ', x)
                begin = x * perSplit
                if x == nSplit - 1:
                    end = begin + (totalData - begin)
                else:
                    end = begin + perSplit
                print(begin, end, totalData)

                if not self.isVideo:
                    for i in range(begin, end):
                        for j in range(len(t_l_imgs[i])):
                            #print('append ',t_l_imgs[i][j])
                            self.l_imgs.append(t_l_imgs[i][j])
                            self.l_gt.append(t_l_gt[i][j])
                            self.l_gtE.append(t_l_gtE[i][j])

                            self.list_gt_names.append(t_list_gt_names[i][j])
                            self.list_gtE_names.append(t_list_gtE_names[i][j])
                            indexer += 1

                else:
                    for i in range(begin, end):
                        for j in range(len(t_l_imgs[i])):  #seq counter

                            t_img = []
                            t_gt = []
                            t_gtE = []
                            t_gt_N = []
                            t_gt_EN = []
                            tmp = 0

                            for k in range(len(t_l_imgs[i][j])):  #seq size
                                t_img.append(t_l_imgs[i][j][k])
                                t_gt.append(t_l_gt[i][j][k])
                                t_gtE.append(t_l_gtE[i][j][k])

                                t_gt_N.append(t_list_gt_names[i][j][k])
                                t_gt_EN.append(t_list_gtE_names[i][j][k])
                                tmp += 1

                            #print('append ',t_img)
                            self.l_imgs.append(t_img)
                            self.l_gt.append(t_gt)
                            self.l_gtE.append(t_gtE)

                            self.list_gt_names.append(t_gt_N)
                            self.list_gtE_names.append(t_gt_EN)
                            indexer += 1

                print(len(self.l_imgs))

            self.l_gt = np.asarray(self.l_gt)
            self.l_gtE = np.asarray(self.l_gtE)
        else:
            if not self.isVideo:
                self.l_gt = np.zeros([counter_image, 136])
                self.l_gtE = np.zeros([counter_image, 2])
                indexer = 0

                for i in range(len(t_l_imgs)):
                    for j in range(len(t_l_imgs[i])):
                        self.l_imgs.append(t_l_imgs[i][j])
                        print(i, j, '-', len(t_l_imgs[i]))
                        self.l_gt[indexer] = t_l_gt[i][j]
                        self.l_gtE[indexer] = t_l_gtE[i][j]

                        self.list_gt_names.append(t_list_gt_names[i][j])
                        self.list_gtE_names.append(t_list_gtE_names[i][j])
                        indexer += 1

            else:
                self.l_gt = np.zeros([counter_seq, self.seq_length, 136])
                self.l_gtE = np.zeros([counter_seq, self.seq_length, 2])

                indexer = 0

                for i in range(len(t_l_imgs)):  #dataset
                    for j in range(len(t_l_imgs[i])):  #seq counter

                        t_img = []

                        t_gt = np.zeros([self.seq_length, 136])
                        t_gte = np.zeros([self.seq_length, 2])

                        t_gt_n = []
                        t_gt_en = []
                        i_t = 0

                        for k in range(len(t_l_imgs[i][j])):  #seq size

                            t_img.append(t_l_imgs[i][j][k])
                            t_gt[i_t] = t_l_gt[i][j][k]
                            t_gte[i_t] = t_l_gtE[i][j][k]

                            t_gt_n.append(t_list_gt_names[i][j][k])
                            t_gt_en.append(t_list_gtE_names[i][j][k])

                            i_t += 1

                        self.l_imgs.append(t_img)
                        self.l_gt[indexer] = t_gt
                        self.l_gtE[indexer] = t_gte

                        self.list_gt_names.append(t_gt_n)
                        self.list_gtE_names.append(t_gt_en)

                        indexer += 1

        print('limgs : ', len(self.l_imgs))