def read_frame_seqs(in_path, n_split=1): frame_seqs = FrameSeqs() for i, path_i in enumerate(files.top_files(in_path)): name_i = files.Name(path_i.split('/')[-1]).clean() if (len(name_i) == 0): name_i = files.Name(str(i)) frames = [ read_frame(path_j, n_split) for path_j in files.top_files(path_i) ] frame_seqs[name_i] = frames return frame_seqs
def split_each_label(in_path,out_path,train_size=0.8): frames=data.imgs.read_frame_seqs(in_path) new_frames=data.imgs.FrameSeqs() for name_i,seq_i in frames.items(): split_size= int(len(seq_i) *(1.0-train_size)) n_split=int(len(seq_i) /split_size) for j in range(n_split-1): seq_j=seq_i[j*split_size:(j+1)*split_size] name_j=files.Name("%d_1_%d" % (int(name_i),j)) new_frames[name_j]=seq_j print(name_j) seq_j=seq_i[(n_split-1)*split_size: ] name_j=files.Name("%d_2_%d" % (int(name_i),0)) new_frames[name_j]=seq_j new_frames.scale() new_frames.save(out_path)
def read_actions(in_path): actions = ActionImgs() for path_i in files.top_files(in_path): name_i = files.Name(path_i.split('/')[-1]) name_i = name_i.clean() actions[name_i] = cv2.imread(path_i, cv2.IMREAD_GRAYSCALE) return actions
def read_seqs(in_path): seqs=Seqs() for path_i in files.top_files(in_path): data_i=np.loadtxt(path_i, delimiter=',') name_i=path_i.split('/')[-1] name_i=files.Name(name_i).clean()#clean(name_i) seqs[name_i]=data_i return seqs
def read_seqs(in_path): paths = files.top_files(in_path) seq_dict = Seqs() for path_i in paths: data_i = np.load(path_i) name_i = path_i.split('/')[-1] name_i = files.Name(name_i).clean() seq_dict[name_i] = data_i return seq_dict
def read_single(in_path): lines = open(in_path, 'r').readlines() feat_dict = {} for line_i in lines: raw = line_i.split('#') if (len(raw) > 1): data_i, info_i = raw[0], raw[-1] info_i = files.Name(info_i).clean() #files.clean_str(info_i) x_i = np.fromstring(data_i, sep=',') x_i = np.nan_to_num(x_i, nan=0.0, posinf=0.0, neginf=0.0) feat_dict[info_i] = x_i return Feats(feat_dict)
def read_feats(in_path): if (type(in_path) == list): all_feats = [read_feats(path_i) for path_i in in_path] return concat_feats(all_feats) lines = open(in_path, 'r').readlines() feat_dict = Feats() for line_i in lines: raw = line_i.split('#') if (len(raw) > 1): data_i, info_i = raw[0], files.Name(raw[-1]) info_i = info_i.clean() feat_dict[info_i] = np.fromstring(data_i, sep=',') return feat_dict
def read_pairs(in_path): if (type(in_path) == list): return [read_pairs(path_i) for path_i in in_path] raw_i = pairs.read(in_path) dict_i = {files.Name(name_i): data_i for name_i, data_i in raw_i.items()} return pairs.DTWpairs(dict_i)
def read_rename(id): rename = json.load(open("%s.json" % id)) return { files.Name(name_i): files.Name(rename_i) for name_i, rename_i in rename.items() }
def rename(self, name_dict): new_feats = Feats() for name_i, name_j in name_dict.items(): new_feats[files.Name(name_j)] = self[name_i] return new_feats